期刊文献+

基于已决赔款与已报案赔款相关性的随机性准备金进展法 被引量:10

Stochastic Reserve Development Method Based on the Correlation between the Paid Payments and the Incurred Payments
原文传递
导出
摘要 随着我国保险业精算技术的普及与发展,目前对准备金波动性的研究已成为一个新方向,准备金评估随机性方法已在国内保险业得到认可和应用。本文创新性地研究了如何将已决赔款和已报案赔款数据的相关性引入到随机性准备金评估方法中,提出了两种基于相关性的随机性准备金进展法,并通过精算实务中的数值实例,应用R软件加以实证分析。本文的研究对保险公司在准备金评估方法中引入并发展随机性方法,具有十分重要的理论意义和实践价值,也为保险行业开发新的准备金评估软件提供有益的支持和参考。 With the popularity and development of actuarial techniques in China's insurance industry, the reserves volatility has become a new research topic. The stochastic reserving methods have been recognized and applied in the domestic insurance industry. The paper proposes to study how to introduce the correlation between the paid payments and the incurred payments into stochastic reserving methods, and suggests two stochastic reserve development methods based on the correlation, in order to take account of the correlation between the paid payments and the incurred payments. The first method is a parametric bootstrap method based on bivariate normal distribution, which corresponds to a special copula, i.e., Gaussian copula. The second method is a non-parametric bootstrap method based on resampling pairwise. Numerical illustrations from actuarial practice are provided with R software as positive analysis. We obtain the simulated predictive distributions for the outstanding claims liabilities, as well as the distribution characteristics such as the mean, variance, and percentiles. It is seen that the results from the two methods are very close. The results of the paper have important theoretical significance and practical value for stochastic reserving methods to be introduced and developed into insurance companies, and provide a useful support and reference in developing new reserving software for the insurance industry.
出处 《管理评论》 CSSCI 北大核心 2013年第5期155-166,共12页 Management Review
基金 中央高校基本科研业务费专项资金(NKZXTD1101) 国家自然科学基金面上项目(71271121)
关键词 随机性准备金进展法 COPULA函数 BOOTSTRAP方法 二元正态分布 预测分布 stochastic reserve development method Copula function bootstrap method bivariate normal distribution predictive distribution
  • 相关文献

参考文献15

  • 1Renshaw, A. E., R. Verrall. A Stochastic Model Underlying the Chain-ladder Technique[J]. British Actuarial Journal, 1998,4(4): 903-923.
  • 2Taylor, G. Loss Reserving: An Actuarial Perspective[M]. Boston: Kluwer Academic, 2000.
  • 3Taylor, G., G. McGuire. Loss Reserving with GLMs: A Case Study[R]. Casualty Actuarial Society Discussion Paper Program, 2004, 327-391. Paper Presented to the CAS Spring 2004 Meeting, Colorado Springs, CO, May 16-19, 2004.
  • 4England, P. D. Addendum to "Analytic and Bootstrap Estimates of Prediction Errors in Claims Reserving"[J]. Insurance: Mathematics and Economics, 2002,31(3):461-466.
  • 5England, P. D., R. Verrall. Predictive Distributions of Outstanding Liabilities General Insurance[J]. Annuals of Actuarial Science, 2007,1(5):221-270.
  • 6Schmidt, K. D. A Bibliography on Loss Reserving[J/OL]. Available Online (the latest version is on July 11,2011). http://www.math. tu-dresden.de/sto/schmidt, 2011.
  • 7Wtithrich, M. V., M. Merz. Stochastic Claims Reserving Methods in Insurance[M]. New York: John Wiley & Sons, Ltd, 2008.
  • 8Davison, A. C., D. Hinkley. Bootstrap Methods and Their Application[M]. Cambridge University Press, 1997.
  • 9张连增,段白鸽.基于Bootstrap方法的随机性准备金进展法及R实现[J].山西财经大学学报,2011,33(4):18-24. 被引量:11
  • 10张连增,段白鸽.准备金评估的随机性Munich链梯法及其改进——基于Bootstrap方法的实证分析[J].数量经济技术经济研究,2011,28(11):98-111. 被引量:10

二级参考文献39

  • 1Wuthrich M V and Merz M. Stochastic Claims Reserving Methods in Insurance [M]. John Wiley & Sons, Ltd, 2008(1): 167-199.
  • 2Taylor G, Ashe F R. Second moments of estimates of outstanding claims[J]. Journal of Econometrics, 1983, 23(1): 37-61.
  • 3Efron B. Bootstrap methods: another look at the jackknife [J]. The Annals of Statistics, 1979, 7(1): 1-26.
  • 4England P D, Verrall R J. Predictive distributions of outstanding liabilities general insurance [J]. Annals of Actuarial Science, 2007, 1(2): 221-270.
  • 5England P D, Verrall R J. Analytic and bootstrap estimates of prediction errors in claims reserving [J]. Insurance: Mathematics and Economics, 1999, 25: 281-293.
  • 6England P D. Addendum to "analytic and bootstrap estimates of prediction errors in claims reserving" [J]. Insurance: Mathematics and Economics, 2002(31): 461-466.
  • 7G. Quarg, T. Mack, 2004, Munich Chain Ladder rJ], Blatter der DGVFM, Band XXVI, 597-630.
  • 8T. Mack, 1993, Distribution-free Calculation of the Standard Error of Chain Ladder Reserve Es-timates[J]. ASTIN Bulletin, 23 (2), 213-225.
  • 9P. D. England, R. J. Verrall, 1999, Analytic and Bootstrap Estimates of Prediction Errors inClaims Reserving[J]. Insurance: Mathematics and Economics, 25, 281-293.
  • 10P. D. England, R. J. Verrall, 2007, Predictive Distributions of Outstanding Liabilities GeneralInsurance [J], Annals of Actuarial Science, Vol 1, Part II, 221-270.

共引文献27

同被引文献254

引证文献10

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部