期刊文献+

大跨钢-混凝土结合梁斜拉桥传力机理 被引量:22

Mechanic Behavior of Steel-Concrete Composite Girder of Long-Span Cable-Stayed Bridge
下载PDF
导出
摘要 为探讨大跨结合梁斜拉桥中钢主梁与混凝土板的传力机理,采用梁段模型试验与有限元数值分析相结合的方法,对观音岩长江大桥主梁的受力性能进行了研究.用有限元软件ANSYS建立标准梁段的空间有限元模型,对不同组合荷载作用下结合梁的应力分布进行了弹性分析;考虑材料的非线性特性和剪力钉荷载-滑移的非线性关系,对设计荷载组合下结合梁的力学行为进行了弹塑性分析.在此基础上,采用1∶2的缩尺比例进行模型试验研究,测试了不同荷载组合下结合梁截面的应力.研究结果表明:在设计荷载组合作用下,混凝土板与钢主梁间的相对滑移较小,剪力钉能有效抗剪,保证结构整体受力性能的要求;结合梁截面应力基本满足平截面假定,钢主梁以抗弯为主,混凝土板承担较大截面压力. In order to investigate the mechanic behavior of steel-concrete composite girder in long-span cable-stayed bridge, finite element method (FEM) analysis and specimen test of Guanyinyan Yangtze River bridge were carried out. By using FEM program ANSYS, a 3D model for girder section was founded, and elastic analyses of stress distribution of composite girder under different load cases were performed. By considering the nonlinear material properties and nonlinear slip of shear stud, elastic- plastic behaviors of composite girder were analyzed. A test specimen for composite girder with a scale of 1 to 2 was designed, and its static load test was carried out. Stresses at test points in cross section of composite girder beating different load cases were obtained. The research results show that few relative slippage occurs between steel plate girder Shear studs are qualified to resist interface and concrete slab of composite girder bearing design load. shear and ensure a full composite action. The distribution of stresses in cross sections are similar to the assumption of plane cross-section. For the composite girder, steel girder mainly provides bending strength, while concrete slab provides compression strength mainly.
作者 卫星 强士中
出处 《西南交通大学学报》 EI CSCD 北大核心 2013年第3期402-408,共7页 Journal of Southwest Jiaotong University
基金 国家自然科学基金资助项目(50808150)
关键词 斜拉桥 钢-混凝土结合梁 模型试验 有限元法 应力分布 cable-stayed bridge steel-concrete composite girder specimen test FEM ( finiteelement method) stress distribution
  • 相关文献

参考文献12

  • 1NEWMARK N M, SIESS C P, VIEST I M. Test and analysis of composite beams with incomplete interaction[J]. Experimental Stress Analysis, 1951, 9(6) : 896-901.
  • 2European Committee for Standardization (CEN). Eurocode 4 Design of composite steel and concrete structures, part 2 : composite bridges[ S]. Brussels : European Committee for Standardization, 1994.
  • 3毛学民.钢一混凝土组合梁界面特性分析与加劲板一混凝土组合板荷载分布宽度试验研究[D].成都:西南交通大学土木工程学院,2006.
  • 4蒲黔辉,白光亮.Internal Force Distribution in Steel-Concrete Composite Structure for Pylon of Cable-Stayed Bridge[J].Journal of Southwest Jiaotong University(English Edition),2009,17(2):95-101. 被引量:5
  • 5西南交通大学土木工程学院.大跨结合梁斜拉桥稳定性及钢一混凝土组合效应研究报告[R].成都:西南交通大学土木工程学院,2009.
  • 6雷宇,赵雷,黎曦.大跨度组合梁斜拉桥极限承载力影响因素[J].西南交通大学学报,2009,44(6):812-816. 被引量:12
  • 7OLIVEIRA PEDRO J J, REIS A J. Nonlinear analysis of composite steel concrete cable-stayed bridges[ J]. Engineering Structures, 2010, 32 (9) : 2702 -2716.
  • 8NAKAMURA S, MOMIYAMA Y, HOSAKA T, et al. New technologies of steel-concrete composite bridges [ J ]. Journal of Constructional Steel Research, 2002, 58: 99-130.
  • 9AMADIO C, FEDRIGO C, FRAGIACOMO M, et al. Experimental evaluation of effective width in steel- concrete composite beams[J]. Journal of Construc- tional Steel Research, 2004, 60: 199-220.
  • 10CHUNG W, SOTELINO E D. Nonlinear finite- element analysis of composite steel girder bridges [ J ]. Joumal of Structural Engineering, 2005, 131 (2) : 304 -313.

二级参考文献11

共引文献16

同被引文献201

引证文献22

二级引证文献151

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部