期刊文献+

基于正交变换的区间Ⅱ型模糊模型结构精简

Interval TypeⅡ Fuzzy Model Simplification Based on Orthogonal Transformation Methods
下载PDF
导出
摘要 针对奇异值-QR(SVD-QR)分解方法存在有效奇异值难以确定的问题,提出采用列选主QR分解方法对模糊模型结构进行分析.运用该方法分析从模糊模型抽取的2个激活强度矩阵,利用矩阵R主对角元素作为判断规则重要性的依据,根据矩阵Π中每列值为1的元素位置确定所对应的规则,从而选取重要的规则,构建简约的区间Ⅱ型模糊模型.将本文方法和奇异值-QR分解方法应用于混沌时间序列预测,同时还对比了两种方法选取的重要规则在不同样本条件下的适应能力.结果表明,两种方法选取的重要规则存在明显差异,并且采用本文方法可以获得更小的误差,平均误差为0.108 6;在不同样本条件下采用本文方法所得误差基本一致,具有更强的泛化能力. As the effective singular value is hard to determine in the singular value decomposition-QR (SVD-QR), QR decomposition with column pivoting (pivoted-QR) was proposed to analyze the fuzzy model structure. By applying it to the two firing strength matrices of the fuzzy model, the absolute values of R-diagonal elements were used as a rule ranking index, and specific rule was located according to the position of element with the value of each column of H equaling one. Finally, a chaos time series was predicted with the SVD-QR and pivoted-QR, and adaptability of important rules selected by both methods were compared with different samples. The simulation results indicate that the two methods are clearly distinct in the selection of a set of important fuzzy rules. The error of pivoted- QR is 0. 108 6 in average, much less than that of the QR. The errors of pivoted-QR with different input samoles are close, demonstratinz that it has better generalization nerformance.
出处 《西南交通大学学报》 EI CSCD 北大核心 2013年第3期481-486,共6页 Journal of Southwest Jiaotong University
基金 国家自然科学基金资助项目(51177137/E070303)
关键词 区间Ⅱ型模糊模型 奇异值-QR分解 规则精简 列选主QR分解 interval type II fuzzy model singular value decomposition-QR (SVD-QR) rulereduction pivoted-QR
  • 相关文献

参考文献15

  • 1KARNIK N N, MENDEL J M, LIANG Q. Type-2 fuzzy logic systems[ J]. IEEE Transctions on Fuzzy Systems, 1999, 7(6) : 643-658.
  • 2ZADEH L A. The concept of a linguistic variable and its application to approximate reasoning [ J ]. Information Sciences, 1975, 8(3): 199-249.
  • 3LIU C F, YEH C Y, LEE S J. Application of type-2 neuro-fuzzy modeling in stock price prediction[J]. Applied Soft Computing, 2012, 12(4) : 1348-1358.
  • 4CHEN C C, VACHTSEVANOS G. Bearing condition prediction considering uncertainty: an interval type-2 fuzzy neural network approach [ J ]. Robotics and Computer-Integrated Manufacturing, 2012, 28 ( 4 ) : 509-516.
  • 5MENDEL J M, JOHN R I. Type-2 fuzzy sets made simple [ J ]. IEEE Transctions on Fuzzy Systems, 2002, 10(2) : 117-127.
  • 6SETNES M, BABUSKA R. Rule base reduction: some comments on the use of orthogonal transforms [ J ]. IEEE Transctions on Systems, Man, and Cybernetics, Part C, 2001, 31(2) : 199-206.
  • 7YAM Y, BARANYI P, YANG C T. Reduction of fuzzy nile base via singular value decomposition[J]. IEEE Transctions on Fuzzy Systems, 1999, 7(2) : 120-132.
  • 8LIANG Qilian, MENDEL J M. Designing interval type- 2 fuzzy logic systems using an SVD-QR method: rule reduction[ J]. International Journal of Intelligent Systems, 2000, 15 (10) : 939-957.
  • 9LIANG Qilian, MENDEL J M. Interval type-2 fuzzy logic systems: theory and design[J]. IEEE Transctions on Fuzzy Systems, 2000, 8(5) : 535-550.
  • 10JOHN R, COUPLAND S. Type-2 fuzzy logic: a historical view [ J ]. Computational Intelligence Magazine, 2007, 2(1): 57-62.

二级参考文献14

  • 1王辉,肖建.基于多分辨率分析的T-S模糊系统[J].控制理论与应用,2005,22(2):325-329. 被引量:4
  • 2MENDEL J M. Fuzzy sets for words: a new beginning[ C ]// IEEE Internat. Conf. on Fuzzy Svstems. St. Louis, IEEE. 2003: 37-42.
  • 3MENDEL J M. Computing with words and its relationships with fuzzistics [ J ]. Information Sciences, 2007, 177(4): 988-1006.
  • 4MENDEL J M. Advances in Type-2 fuzzy sets and systems[J]. Information Sciences, 2007, 177( 1 ) : 84- 110.
  • 5ZARANDI M H F, TURKSEN I B, KASBI O T. Type- 2 fuzzy modeling for desulphurization of steel process[J]. Expert Systems with Applications, 2007, 32(1) : 157-171.
  • 6MENDEL J M. On a 50% savings in the computation of the centroid of a symmetrical interval Type-2 fuzzy set[J]. Information Sciences, 2005, 172(3): 417- 430.
  • 7CAO Jiangtao, LIU Honghai, LI Ping, et al. Adaptive fuzzy logic controller for vehicle active suspensions with interval type-2 fuzzy membership functions[C]//IEEE International Conference on Fuzzy Systems. Hong Kong: IEEE, 2008: 83-89.
  • 8WU Dongrui, TAN Weiwan. A simplified type-2 fuzzy logic controller for real-time control[ J 1. ISA Transactions, 2006, 45 (4) : 503-516.
  • 9TORRES P, SAEZ D. Type-2 fuzzy logic identification applied to the modeling of a robot hand[C]// IEEE International Conference on Fuzzy Systems. Hong Kong: IEEE, 2008: 854-861.
  • 10DAUBECHIES I. Ten lectures on wavelets[M]. Philadelphia: The Society for industrial and applied mathematics, 1992: 15-31.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部