期刊文献+

列延拓矩阵方程组的最佳逼近解 被引量:3

The optimal approximations of the equations of column extended matrix
下载PDF
导出
摘要 主要讨论列延拓矩阵的线性约束矩阵方程组的最佳逼近.利用延拓矩阵的性质和矩阵奇异值分解的方法研究了列延拓矩阵的线性约束矩阵方程组通解表达式,并得到该问题有解的充要条件,最后研究了相应的最佳逼近解问题. The essay mainly discusses the optimal approximations of the equations with linear restrains of the column extended matrix. Taking advangtage of the properties of the extended matrix and the method of singular value decomposition, the general solution's expression of the matrix equations with linear re- strain is given, the necessary and sufficient conditions of the solvability are derived, and finally the relat- ed approximations are studied.
作者 吴强 吴霞
出处 《暨南大学学报(自然科学与医学版)》 CAS CSCD 北大核心 2013年第3期267-269,共3页 Journal of Jinan University(Natural Science & Medicine Edition)
基金 国家"十一五"规划基金课题项目(BCA060016)
关键词 列延拓矩阵 线性约束 矩阵方程组 奇异值分解 最佳逼近 column extended matrix linear restrain matrix equations singular value decom-position optimal approximation
  • 相关文献

参考文献5

二级参考文献17

  • 1孙继广.实对称矩阵的两类逆特征值问题[J].计算数学,1988,(3):282-290.
  • 2Dold A, Eckmann B. Geometry of Banach Spaces-Selectes Topics[M]. Berlin, Heidelberg, New York:Springer-Verlag, 1975.
  • 3Garkavi A L. The best possible net and the best possible criss-section of a set in a normed spaces[J]. Izv Akad Nank SSSR Ser Mat, 1964,39(2): 111-132.
  • 4Zizler V. On some rotundity and smoothness properties of Banach spaces[D]. Dissertationes:Math, 1969.
  • 5Day M M ,James R C ,Swaninathan S. Normed linear spaces that are uniformly convex in every direction[J]. Can J Math, 1971,23(6) : 1051-1059.
  • 6张磊,湖南数学年刊,1987年,1卷,58页
  • 7孙继广,计算数学,1987年,9卷,2期,206页
  • 8蒋正新,计算数学,1986年,8卷,1期,47页
  • 9胡锡炎,张磊,谢冬秀.双对称矩阵逆特征值问题解存在的条件[J].计算数学,1998,20(4):409-418. 被引量:88
  • 10钱世镕,姜文达.信号处理的新方法——时-频联合分析法简介[J].自然杂志,1999,21(3):159-160. 被引量:5

共引文献96

同被引文献33

  • 1陈龙玄.四元数矩阵的特征值和特征向量[J].烟台大学学报(自然科学与工程版),1993,6(3):1-8. 被引量:11
  • 2姜同松,魏木生.四元数矩阵的实表示与四元数矩阵方程[J].数学物理学报(A辑),2006,26(4):578-584. 被引量:18
  • 3Wang Q W, Yu J. On the generalized bi (skew-)symmetric solutions of a linear matrix equationand its procrust problems [J]. J Appl Math Comput, 2013, 219: 9872-9884.
  • 4Wang Q W. Bisymmetric and centrosymmetric solutions to systems of real quaternion matrixequations [J]. J Comput Math Appl, 2005, 49: 641-650.
  • 5Li Y T, Wu W J. Symmetric and skew-antisymmetric solutions to systems of real quaternionmatrix equations [J]. J Comput Math Appl, 2008,55(6): 1142-1147.
  • 6Wang Q W, Chang H X, Lin C Y. P- (skew)symmetric common solutions to a pair of quaternionmatrix equations [J]. J Appl Math Comput, 2008, 195: 721-732.
  • 7Zhang Q, Wang Q W. The (P, Q)-(skew) symmetric extremal rank solutions to a system ofquaternion matrix equations [J]. J Appl Math Comput, 2011,217: 9286-9296.
  • 8Jiang T S, Wei M S. On a solution of the quaternion matrix equation X - AXB 二 C and itsapplication [J]. Acta Mathematica Sinica\ English Series, 2005, 21(3): 483-490.
  • 9Wang Q W, Li C K. Ranks and the least-norm of the general solution to a system of quaternionmatrix equations [J]. Linear Algebra Appl, 2009, 430: 1626-1640.
  • 10Khatri C G, Mitra S K. Hermitian and nonnegative definite solutions of linear matrix equa-tions [J]. SIAM J Appl Math, 1976, 31: 579-585.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部