期刊文献+

龙格库塔方法在三维物理热工耦合瞬态分析中的应用 被引量:1

Application of Runge-Kutta Method in 3-D Coupled Netronics and Thermal-Hydraulics Transient Analysis
下载PDF
导出
摘要 物理热工耦合采用模块化耦合方式,中子学空间求解采用第二类边界条件节块格林函数法(NGFM),热工水力求解采用COBRA-Ⅳ程序模块。耦合非线性方程的时间离散采用对角线隐式龙格库塔格式(DIRK),采用Richardson外推和嵌入低阶方法实现时步自适应,采用厄米插值得到连续时刻的解。采用块迭代方式求解离散方程开发NCC程序。数值验证结果表明,计算结果与参考结果符合较好,DIRK(2,2)-E格式是本文所采用的格式中精度、效率较高的。 The coupled neutronics and thermal-hydraulics model is studied with the module coupling. Nodal Green's Function Method (NGFM) based on the second boundary condition is used for solving neutronics module. The sub-channel code COBRA-IV is used for solving thermal-hydraulic module. Diagonally Implicit Runge-Kutta (DIRK) method is applied in the temporal discretization of coupled nonlinear equations. Automatic time step size control is achieved through Richardson Extrapolation or embedded lower order Runge-Kutta formulas. Hermite interpolation is used for contirluous time variable solutions (dense output). The solving procedure is based on block-iterative method, and the NCC code is developed. The numerical results show that the solution of NCC agrees well with reference solutions, and the DIRK(2,2)-E formula is more accurate and efficient than others in this paper.
出处 《核动力工程》 EI CAS CSCD 北大核心 2013年第3期17-23,共7页 Nuclear Power Engineering
关键词 龙格库塔 节块格林函数法 时空动力学 热工水力 模块化耦合 Runge-Kutta method, Nodal Green's function method, Spatial kinetics, Thermal-hydrualic, Module coupling
  • 相关文献

参考文献11

  • 1Zimin V G, Asaka H, Anoda Y. Verification of J-TRAC Code with 3D Neutron Kinetics Model SKETCH-N for PWR Rod Ejection Analysis[C].Ninth International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-9)California: 1999.
  • 2Ragusa J C, Mahadevan V S. Consistent and Accurate Schemes for Coupled Neutronics Thermal-Hydraulics Reactor Analysis[J]. Nuclear Engineering And Design. 2009, 239: 566-579.
  • 3赵文博,姚栋,王侃,等.龙格库塔时间离散的中子时空动力学方程求解[C].第十三届反应堆数值计算与粒子输运学术会议.西安:2010.
  • 4胡永明,赵险峰.第二类边界条件先进格林函数节块法[J].清华大学学报(自然科学版),1998,38(4):17-21. 被引量:16
  • 5Hairer E, Norsett S P, Wanner G. Solving Ordinary Differential Equations 1: Nonstiff Problems(2nd)[M]. Berlin Heidelberg: Springer-Verlag, 1993.
  • 6Prothero A, Robinson A. On the Stability and Accuracy of One-Step Methods for Solving Stiff Systems of Ordinary Differential Equations[J]. Mathematics Of Computation. 1974, 28: 145-162.
  • 7Alexander R. Diagonally Implicit Runge-Kutta Methods for Stiff O.D.E.'s[J]. SIAM Journal on Numerical Analysis. 1977, 14(6): 1006-1021.
  • 8Hairer E, Wanner G. Solving Ordinary Differential Equations Ⅱ : Stiff and Differential-Algebraic Problems (2nd)[M]. Berlin Heidelberg: Springer-Verlag, 1996.
  • 9Finnemann H, Galati A. NEACRP 3-D LWR Core Transient Benchmark Final Specifications[R]. OECD/ NEA, 1992.
  • 10Finnemann H, Bauer H, Galati A, et al. Results of LWR Core Transient Benchmarks[R]. OECD/NEA, 1993.

二级参考文献1

  • 1胡永明,清华大学学报,1995年,35卷,3期,1页

共引文献15

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部