期刊文献+

基于改变率自适应分类的多类隐写分析

MULTI-CLASS STEGANALYSIS BASED ON CHANGE RATE SELF-ADAPTIVE CLASSIFICATION
下载PDF
导出
摘要 一般的多类隐写分析需将每种隐写算法的各种嵌入率当作一类进行训练,因其在构造分类器时未能充分考虑算法和嵌入率对分析能力的影响,故而准确率存在一定的提升空间。提出一种基于改变率自适应分类的多类隐写分析方法,将隐写改变率和算法差异性两方面因素分层考虑。该方法使用支持向量回归法估计待测图像的改变率,进而根据改变率自适应地选择分类器,从而提高分类准确率。实验结果表明,所提方法相较于现有准确率最高的方法准确率平均提高约2%~3%,特别在嵌入率较低的情况下,提高幅度可达5%以上。 In general multi-class steganalysis, different embedding rates in each steganographic algorithm are treated as a single class for training. It does not fully take into account the impact of embedding rates and steganographic algorithms on analysis capability when constructing the classifier, so the accuracy can be improved. We propose a new approach for multi-class steganalysis based on change rate self-adaptive classification, which considers the change rates and difference of steganographic algorithms hierarchically. We use support vector regression to estimate the change rate of the testing image and then select classifiers self-adaptively according to its change rate, so that the accuracy of classification is improved. Experimental results show that this approach improves the accuracy average about 2% - 3% in comparison with current methods with highest accuracy, in particular, when the embedding rate is low, the improvement range can achieve 5% or higher.
出处 《计算机应用与软件》 CSCD 北大核心 2013年第6期1-3,87,共4页 Computer Applications and Software
基金 国家自然科学基金项目(61170281) 北京市自然科学基金项目(4112063) 中国科学院战略性先导科技专项课题(XDA06030600) 中国科学院信息工程研究所创新课题(Y1Z0041101,Y1Z0051101)
关键词 隐写 多类隐写分析 改变率 支持向量回归 Steganography Multi-class steganalysis Change rate Support vector regression
  • 相关文献

参考文献14

  • 1王朔中,张新鹏,张卫明.以数字图像为载体的隐写分析研究进展[J].计算机学报,2009,32(7):1247-1263. 被引量:77
  • 2Lubenko I,Ker A D. Steganalysis using logistic regression[ C]//Pro-ceedings of the Society of Photo-optical Instrumentation Engineers,CA, USA, Jan 24-46, Bellingham: SPIE Press:0K01-OKU.
  • 3Pevny T, Fridrich J, Ker A D. From blind to quantitative steganalysis[J]. IEEE Transactions on Information and Security, 2012 , 7(4):445 -454.
  • 4Pevny T, Fridrich J. Benchmarking for steganography [ C ]//Proceed-ings of 10th International Workshop on Information Hiding, Santa Bar-bara, CA, USA, Berlin: Springer-Verlag, 2008:251 -267.
  • 5黄聪,宣国荣,高建炯,施云庆.基于模式识别的多类隐写分析[J].计算机工程与应用,2006,42(27):43-45. 被引量:1
  • 6Pevny T, Fridrich J. Multiclass detector of current steganographic meth-od for JPEG format[ J] . IEEE Transactions on Information and Securi-ty. 2008,3(4) :635 -650.
  • 7Pevny T,Fridrich J. Merging Markov and DCT features for multi-classJPEG steganalysis [ C ] //Proceedings of the Society of Photo-optical In-strumentation Engineers, San Jose, CA, USA, Jan. 29-Feb. 1,Bell-ingham :SPIE Press, 2008:301 -314.
  • 8Scholkopf B,Smola A. Learning with kernels; support vector machines, reularization,optimization,and beyond (adaptive confutation and machinelearning) [M]. The MTT Press, 2001.
  • 9Sallee P. Model-based steganography [ C ] //2nd International Workshop onDigital Watermarking, Seoul, South Korea ,Oct 20 - 22, Berlin; Springer-Verlag, 2(XW:174 -188.
  • 10Westfeld A. High capacity despite better steganalysis ( F5-a stegano-graphic algorithm) [ C ]//Proceedings of 4th International Workshop onInformation Hiding, Pittsburgh, PA, USA, Apr 25 - 27,Berlin:Springer-Verlag,2001 ,289 - 302.

二级参考文献14

  • 1张卫明,刘九芬,李世取.LSB隐写术的密钥恢复方法[J].中山大学学报(自然科学版),2005,44(3):29-33. 被引量:3
  • 2张新鹏,王朔中.对空域BPCS密写的统计分析[J].计算机辅助设计与图形学学报,2005,17(7):1625-1629. 被引量:20
  • 3刘歆,牛少彰.信息隐藏的检测算法研究综述[J].北京电子科技学院学报,2005,13(4):90-94. 被引量:2
  • 4郭艳卿,何德全,尤新刚,孔祥维,王波.基于整体性的隐密分析特征提取和融合方法研究[J].电子学报,2006,34(B12):2443-2446. 被引量:4
  • 5T Pevny,J Fridrich.Towards Multi-class Blind Steganalyzer for JPEG Images[C].In:International Workshop on Digital Watermarking,LNCS vol 3710,Springer-Verlag,2005:39~53
  • 6Guorong Xuan,Yun Q Shi,Jianjiong Gao et al.Steganalysis based on multiple features formed by statistical moments of wavelet characteristic functions[C].In:Information Hiding Workshop (IHW05),Publisher:Springer-Verlag GmbH,ISSN:0302-9743,Volume 3727,2005-06:262~277
  • 7CorelDraw Software.htt p://www.corel.com
  • 8R O Duda,P E Hart,D G Stork.Pattern Classification[M].Second Edition,John Wiley & Sons,2001
  • 9A Piva,M Barni,E Bartolini et al.DCT-based Watermark Recovering without Resorting to the Uncorrupted Original Image[C].In:Proceedings of the 1997 International Conference on Image Processing (ICIP'97) 3-Vol1,1997:520
  • 10I J Cox,J Kilian,T Leighton et al.Secure Spread Spectrum Watermarking for Multimedia[J].IEEE Trans on Image Processing,1997;6(12):673~1687

共引文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部