期刊文献+

嵌入式植物自动识别系统的设计与实现 被引量:9

Design and implementation of an embedded automatic plant recognition system
下载PDF
导出
摘要 采用嵌入式技术和图像处理技术,通过提取叶片相对稳定的形状特征实现对植物种类的识别分类。系统基于Ubuntu 10.04,采用Qt Creator1.3.1在北京博创公司的UP-NETARM2410-S开发板上进行了实现。功能包括植物叶片的采集和图像拍摄、图像预处理(图片灰度处理及轮廓提取)、图像特征提取(包括叶片的圆形度、偏心率等特征)、图像识别这4个步骤。实验结果表明:该系统可以比较准确地实现对银杏Ginkgo biloba,樟树Cinnamomum camphora,无患子Sapindus saponaria等9种植物叶片的识别分类。 To identify plant categories based on steady characteristics of leaves with embedded techniques and image processing technology, a system was designed and implemented based on Ubuntu 10.04, Qt Creatorl.3.1, and UP-NETARM2410-S board developed by Bochuang Company. The system includes four steps: ( 1 ) collecting leaves and taking images, (2) preprocessing images (transform them into grayscale images and extracting the contours), (3) extracting shape features (including leaf shape, complexity, and eccentricity), and (4) matching and recognizing the leaves. The results showed that this system can accurately recognize Ginkgo biloba, Cinnamomum camphora, Sapindus saponaria, and plant leaves from nine other species. [Ch, 6 fig. 1 tab. 13 ref. ]
出处 《浙江农林大学学报》 CAS CSCD 北大核心 2013年第3期379-384,共6页 Journal of Zhejiang A&F University
基金 国家自然科学基金资助项目(60970082) 浙江省自然科学基金资助项目(Y3090061) 浙江农林大学科研发展基金资助项目(2010FK055)
关键词 植物学 叶片识别 图像处理 嵌入式 特征提取 botany leaf recognition image process embedded feature extracting
  • 相关文献

参考文献12

  • 1INGROUILLE M J,LAIRD S M.A quantitative approach to oak variability in some north London woodlands [J].LondNat,1986,65:35-46.
  • 2ABBASI S,MOKHTARIAN F.Reliable classification of chrysanthemum leaves through curvature [M]// [n.s.].Pro-ceed-ings of the First International Conference on Scale-space Theory in Computer Vision.London:Springer Verlag,1997:284-295.
  • 3IM C,NISHIDA H,KUNII T.Recognizing plant species by leaf shapes:A case study of the Acerfamily [M]// [n.s.]Fourteenth International Conference on Pattern Recog-nition.Brisbane:IEEE Computer Society Press,1998:1171-1173.
  • 4WANG Xiaofeng,DU Jixiang,ZHANG Guojun .Recognition of leaf images based on shape features using a hyper-sphere classifier [M]//[n.s.].Advances in Intelligent Computing.Berlin/:Springer,2005:87-96.
  • 5王路,张蕾,周彦军,曾晓云,孔俊.基于LVQ神经网络的植物种类识别[J].吉林大学学报(理学版),2007,45(3):421-426. 被引量:20
  • 6朱荣胜,陈庆山,杨佳,吴贝贝,吴绪霞,李荟,孟军.大豆叶片的特征提取方法研究[J].农机化研究,2010,32(5):13-16. 被引量:4
  • 7王晓峰,黄德双,杜吉祥,张国军.叶片图像特征提取与识别技术的研究[J].计算机工程与应用,2006,42(3):190-193. 被引量:114
  • 8DIGIA 0.Qt Online Reference Documentation[R/OL].2005-12-15[2012-01-20].http://doc.qt.nokia.com.
  • 9中科院自动化所自由软件协会.OpenCV 参考手册[R/OL].2009-10-24[2012-01-20].http://www_opencv.org.cn/in-dex.php.
  • 10王敬轩,冯全,王宇通,邵新庆.基于图像识别技术的豆科牧草分类研究[J].草地学报,2010,18(1):37-41. 被引量:9

二级参考文献78

共引文献181

同被引文献120

引证文献9

二级引证文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部