摘要
熔盐堆是第四代核能论坛确定的6种先进四代堆型之一,在固有安全、燃料循环、小型化、核资源的有效利用和防止核扩散等方面有其特有的优点。美国橡树岭国家实验室基于熔盐实验堆(Molten Salt ReactorExperiment,MSRE)设计、建造和运行经验,完成了熔盐增殖堆(Molten Salt Breeder Reactor,MSBR)概念设计。本文对MSBR进行初步的安全分析,为进一步改进和优化熔盐堆安全特性提供参考。根据MSBR的概念设计,建立了一个采用耦合简化传热机制点动力学的安全分析模型,并通过MSRE实验数据进行了验证。应用该模型模拟计算了MSBR在阶跃反应性和线性反应性引入后的堆芯热功率、堆芯石墨和堆芯熔盐温度瞬态。结果表明:在引入不超过500 pcm反应性情况下,无需采取任何措施,不会出现温度过高、堆芯结构材料融化事故;若需采取控制措施,线性引入反应性比阶跃引入反应性更易于控制,且应尽量避免短时间内引入反应性。
Background: The molten salt reactor is one of the six advanced reactor concepts identified by the Generation IV International Forum as a candidate for cooperative development, which is characterized by remarkable advantages in inherent safety, fuel cycle, miniaturization, effective utilization of nuclear resources and proliferation resistance. ORNL finished the conceptual design of Molten Salt Breeder Reactor (MSBR) based on the design, building and operation of Molten Salt Reactor Experiment (MSRE). Purpose: We attempt to implement the preliminary safety analysis of MSBR in order to provide a reference for the design and optimization of MSBR in the future. Methods: According to the conceptual design of MSBR, a model of safety analysis using point kinetics coupled with the simplified heat transfer mechanism is presented. The model is applied to simulate the transient phenomena of MSBR initiated by an abnormal step reactivity addition and an abnormal ramp reactivity addition at full-power equilibrium condition. Results: The thermal power in the core increases rapidly at the beginning and isaccompanied by a rise of the fuel and graphite temperatures after 100, 300, 500 and 600 pcm reactivity addition. The maximum outlet temperature of the fuel in the core is at 1250℃ in 500 pcm reactivity addition, but up to 1350~C in 600 pcm reactivity addition. The maximum of the power and the temperature are delayed and lower in the ramp reactivity addition rather than in the step reactivity addition. Conclusions: Based on the results, when the reactivity inserted is less than 500 pcm in maximum at full power equilibrium condition, the structural material in Hastelloy-N is not melted and can keep integrity without external control action. And it is necessary to try to avoid inserting a reactivity at short time.
出处
《核技术》
CAS
CSCD
北大核心
2013年第6期52-59,共8页
Nuclear Techniques
关键词
熔盐增殖堆
安全分析
点动力学
Molten salt breeder reactor, Safety analysis, Point kineticsA