期刊文献+

高峰值功率亚纳秒脉冲光纤放大器特性研究 被引量:2

Study on Characteristics of Picosecond Pulsed Fiber Amplifier with High Peak Power
原文传递
导出
摘要 以被动调Q的固体薄片激光器作为种子光源,以中心波长976nm的半导体激光器为抽运源,通过端面抽运耦合,搭建了窄脉宽双包层掺镱光纤放大器。实验研究了前向、后向端面抽运方式对窄脉宽双包层掺镱光纤放大器的输出平均功率、激光光谱、脉冲宽度等特性的影响,并进行分析讨论。结果表明,采用后向抽运方式,窄脉宽双包层掺镱光纤放大器,获得了平均功率为9.3W的放大激光输出,重复频率为10kHz,脉冲宽度为450ps,峰值功率大于2MW。 A subnanosecond pulsed, one-stage Yb-doped fiber master oscillator power amplifier (MOPA) system for different pumping constructions is reported, which is seeded by a passively Q-switched Nd: YAG microchip laser. The comparison and discussions of average power, spectrum, together with pulse temporal profile of output laser under the forward pumping and backward pumping conditions are presented. Results show that the latter one provides the better performance, in which average output power as high as 9.3 W is achieved with pulse duration of 450 ps at 10 kHz repetition rate. The corresponding peak power is higher than 2 MW.
出处 《中国激光》 EI CAS CSCD 北大核心 2013年第6期109-113,共5页 Chinese Journal of Lasers
基金 上海市青年科技启明星计划(12QH1401100)资助课题
关键词 光纤激光 薄片激光器 皮秒脉冲 前向抽运 后向抽运 fiber laser thin disk laser picosecond forward pumping backward pumping
  • 相关文献

参考文献15

  • 1Lin Li. The advances and characteristics of high-power diode laser materials processing[J]. Laser Material Processing, 2000, 34(4- 6): 231-253.
  • 2Y. Hori, I. Kurornatsu , Y. Sugimura. Photoselective vaporization of the prostate using high power (80 W) KTP laser: one year follow up of the first 101 patients in Japan[J]. lnt ] Ural. , 2008,15(12): 1067-1071.
  • 3W. E. Glenn. Solid-state light sources for color projection[J]. Advanced Solid State Lasers, 1997, 10: 38-45.
  • 4刘鹏祖,侯静,张斌,陈金宝.基于半导体可饱和吸收镜的1550nm被动锁模光纤激光器[J].中国激光,2011,38(7):98-100. 被引量:13
  • 5刘江,吴思达,王科,曹镱,杨全红,王璞.基于石墨烯可饱和吸收体的被动锁模、被动调Q掺镱光纤激光器[J].中国激光,2011,38(8):8-12. 被引量:28
  • 6刘伟,陈滔,戴建宁,姜培培,吴波,沈永行.全光纤化的被动式亚纳秒脉冲Yb光纤激光器研究[J].光学学报,2011,31(12):166-170. 被引量:9
  • 7P. Duf'riez , A. Piper, A. Malinowski et al . 321 W average power, 1 GHZ, 20 ps , 1060 nm pulsed fiber MOPA source[C]. California: Optical Fiber Communication Conference, 2005. PDP3.
  • 8Fabio Di Teodoro , Christopher D. Brooks. Multistage Yb-doped fiber amplifier generating megawatt peak-power, subnanosecond pulses[J]. Opt. Lett. , 2005, 30(24): 3299-3301.
  • 9S. Pierrot , J. Saby , A. Bertrand et ai . All fiber high energy, high power picosecond laser[ C]. San Jose: Conference on Lasers and Electro-Optics, 2010. CFD3.
  • 10Sheng ping Chen, Hongwei Chen, Iing Hou et al . 100 W all fiber picosecond MOPA laser[J]. Opt. Express, 2009, 17(26): 24008-24012.

二级参考文献27

  • 1王旌,张洪明,张鋆,燕萌,姚敏玉.基于饱和吸收镜的被动锁模光纤激光器[J].中国激光,2007,34(2):163-165. 被引量:32
  • 2Thomas F. Carruthers, IrI N. Duling III. 10 GHz, 1. 3 ps erbium fiber laser employing soliton pulse shortening[J]. Opt. Lett. , 1996, 21(13): 1927-1929.
  • 3Q. L. Bao, H. Zhang, Y. Wang et al.. Atomic layer graphene as saturable absorber for ultrafast pulsed laser[J]. Adv. Funct. Mater, 2009, 19(19): 3077-3083.
  • 4Z. Q. Luo, M. Zhou, J. Wenga al.. Graphene based passively Q-switched dual-wavelength erbium doped fiber laser[J]. Opt. gett. , 2010, 35(21): 3709-3711.
  • 5K. S, Novoselov, A. K. Geim, S. V. Morozov et al.. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306(5696) : 666-669.
  • 6K. S. Novoselov, A. K. Geim, S. V. Morozov et al.. Two- dimensional gas of massless dirac fermions in graphene [J]. Nature, 2005, 438(7065) : 197-200.
  • 7A. C. Ferrari, J. C. Meyer, V. Scardaci et al.. Raman spectrum of graphene and graphene layers[J]. Phys. Rev. Lett. , 2006, 97(18): 187401.
  • 8D. Popa, Z. Sun, F. Torrisi et al.. Sub 200 fs pulse generation from a graphene mode-locked fiber laser[J]. Appl. Phys. Lett. , 2010, 97(20): 203106.
  • 9H. Zhang, D. Y. Tang, Z. M. Zhaoet al.. Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene [J]. Opt. Eccpress, 2009, 17(20): 17630-17635.
  • 10F. Bonaccorso, Z. Sun, T. Hasan et al.. Graphene photonics and optoelectronics[J]. Nature Photonics, 2010, 4:611-622.

共引文献45

同被引文献51

  • 1王清月,胡明列,柴路.光子晶体光纤非线性光学研究新进展[J].中国激光,2006,33(1):57-66. 被引量:72
  • 2J J Zayhowski.Compact solid-state sources and their applications[C].SPIE,2004,5620:155-169.
  • 3A W Yu,M A Krainak,D J Harding,et al..A 16- beam non- scanning swath mapping laser altimeter instrument[C].SPIE,2013,8599:85990P.
  • 4J J Zayhowski,C Dill.Diode- pumped passively Q- switched picosecond microchip lasers[J].Opt Lett,1994,19(18):1427-1429.
  • 5J J Zayhowski,C Dill,C Cook,et al..Mid- and high-power passively Q-switched microchip lasers[C].ASSL 1999,26:178-186.
  • 6O A Konopleva,A A Vasilyeva,A A Seasb,et al..Multi-watt average power nanosecond microchip laser and power scalability estimates[C].OSA/ASSP,2011:ATuB16.
  • 7Linquan Niu,Cunxiao Gao,Shaolan Zhu,et al..Single- and dual- pulse oscillation in a passively Q- switched Nd:YAG microchip laser[J].Opt Exp,2011,19(21):20628-20633.
  • 8H Lei,M Gong,Y Ping,et al..Repetition rate continuously controllable passively Q-switched Nd:YAG bonded microchip laser[J].Laser Phys Lett,2007,4(8):572-575.
  • 9J Y Meng,H X Wang.Single diode- pumped,1.7 ns microchip laser by Nd:YAG/Cr4 + :YAG composite crystal[J].Laser Phys,2011,21(1):79-81.
  • 10Y F Chen,Y P Lan.Comparison between c-cut and a-cut Nd:YVO4 lasers passively Q-switched with a Cr4+:YAG saturable absorber[J].Appl Phys B,2002,74:415-418.

引证文献2

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部