摘要
为了有效地控制激光铣削层质量,建立了激光铣削层质量(铣削层深度、铣削层宽度)与铣削层参数(激光功率、扫描速度和离焦量)之间的反向传播(BP)神经网络预测模型。利用遗传算法(GA)优化了BP神经网络的权值和阈值,构建了基于遗传算法神经网络的质量预测模型。用GA-BP算法对激光铣削层质量进行了仿真预测,并将仿真结果与BP神经网络模型仿真结果进行了对比。仿真结果表明,两种网络模型的平均误差较小,网络训练后检验精度较高,说明两种网络模型用于激光铣削层质量预测是可行的,并且遗传算法优化BP神经网络能够有效地提高网络的收敛性和预测精度。
In order to control the quality of laser milling layer, back propagation (BP) neural network model of the milling laser quality including milling depth and width, and milling layer parameters including laser power, laser velocity and defocus amount is set up. The weight and threshold of the BP neural network is optimized by genetic algorithm (GA), and a quality prediciton model is constructed based on BP neural network. The quality of the laser milling layer is forecasted by the model of GA-BP neural network. The results from BP neural network are compared with that of GA-BP neural network. The results of simulation show that the errors of the two network models are smaller, and the test accuracy are higher. Therefore, the two network models can he used to predict the quality of the laser milling. It is also shown that both the astringent and prediction accuracies of the GA optimized BP neural network are improved.
出处
《中国激光》
EI
CAS
CSCD
北大核心
2013年第6期167-171,共5页
Chinese Journal of Lasers
基金
国家自然科学家(51075173)
江苏省自然科学基金(BK2010288)
江苏省高校自然科学重大基础理论研究(10KJA460004)
江苏高校优势学科建设工程资助课题
关键词
激光技术
激光铣削
遗传算法
反向传播神经网络
优化算法
laser technique
laser milling
genetic algorithms
back propagation network
optimization algorithm