期刊文献+

基于遗传算法优化反向传播神经网络的激光铣削层质量预测 被引量:21

Quality Prediction of Laser Milling Based on Optimized Back Propagation Networks by Genetic Algorithms
原文传递
导出
摘要 为了有效地控制激光铣削层质量,建立了激光铣削层质量(铣削层深度、铣削层宽度)与铣削层参数(激光功率、扫描速度和离焦量)之间的反向传播(BP)神经网络预测模型。利用遗传算法(GA)优化了BP神经网络的权值和阈值,构建了基于遗传算法神经网络的质量预测模型。用GA-BP算法对激光铣削层质量进行了仿真预测,并将仿真结果与BP神经网络模型仿真结果进行了对比。仿真结果表明,两种网络模型的平均误差较小,网络训练后检验精度较高,说明两种网络模型用于激光铣削层质量预测是可行的,并且遗传算法优化BP神经网络能够有效地提高网络的收敛性和预测精度。 In order to control the quality of laser milling layer, back propagation (BP) neural network model of the milling laser quality including milling depth and width, and milling layer parameters including laser power, laser velocity and defocus amount is set up. The weight and threshold of the BP neural network is optimized by genetic algorithm (GA), and a quality prediciton model is constructed based on BP neural network. The quality of the laser milling layer is forecasted by the model of GA-BP neural network. The results from BP neural network are compared with that of GA-BP neural network. The results of simulation show that the errors of the two network models are smaller, and the test accuracy are higher. Therefore, the two network models can he used to predict the quality of the laser milling. It is also shown that both the astringent and prediction accuracies of the GA optimized BP neural network are improved.
出处 《中国激光》 EI CAS CSCD 北大核心 2013年第6期167-171,共5页 Chinese Journal of Lasers
基金 国家自然科学家(51075173) 江苏省自然科学基金(BK2010288) 江苏省高校自然科学重大基础理论研究(10KJA460004) 江苏高校优势学科建设工程资助课题
关键词 激光技术 激光铣削 遗传算法 反向传播神经网络 优化算法 laser technique laser milling genetic algorithms back propagation network optimization algorithm
  • 相关文献

参考文献14

  • 1S. L. Campanelli, A. D. Ludovico , C. Bonserion. Experimental analysis of the laser milling process parameters[J]. J. Materials Processing Technology, 2007, 191(1-3): 220-223.
  • 2朱银波,周建忠,黄舒等.激光在脆性材料加工中的应用[J].中国激光,2009,36(s1):143-146.
  • 3朱银波,周建忠,黄舒,蒋素琴,杨小东.激光三维铣削在陶瓷成形加工中的应用研究[J].激光杂志,2009,30(6):59-61. 被引量:6
  • 4C. H. Tsai , H. W. Chen. Laser milling of cavity in ceramic substrate by fracture - machining element technique []]. J. Mater. Processing Technology, 2003, 136(1-3): 158-165.
  • 5N. Dahotre , S. Harimkar. Laser Fabrication and Machining of Materials [M]. USA: Springer, 2008. 34-37.
  • 6黄舒,周建忠,盛杰,朱银波.Al_2O_3陶瓷激光铣削数值模拟与试验[J].农业机械学报,2011,42(7):229-234. 被引量:6
  • 7J. E. Saklakoglu, S. Kasman. Investigation of micro-milling process parameters for surface roughness and milling depth [J]. Int. J. Adv. Manu f . Technoi , , 2011, 54(5-8): 567-578.
  • 8王续跃,徐文骥,雷明凯,陈华,王连吉,郭东明.基于变质层的Al_2O_3陶瓷激光铣削试验研究[J].大连理工大学学报,2009,49(2):211-215. 被引量:4
  • 9J. P. Davim , C. Oliveira, N. Barricas et ai . Some experimental studies on CO, laser cutting quality of polymeric materials [J]. J. Mater Process Technol. , 2007, 198(1-3): 99- 104.
  • 10杨东辉,马良,黄卫东.基于人工神经网络的激光立体成形件成形表面质量预测[J].中国激光,2011,38(8):83-88. 被引量:14

二级参考文献39

  • 1艾枫.DMG的激光加工技术[J].制造技术与机床,2004(2):51-52. 被引量:3
  • 2沈以赴,顾冬冬,余承业,杨家林,王洋.直接金属粉末激光烧结成形过程温度场模拟[J].中国机械工程,2005,16(1):67-73. 被引量:30
  • 3郭春丽.陶瓷零件的加工方法[J].陶瓷,2006(3):21-24. 被引量:6
  • 4于君,陈静,谭华,黄卫东.激光快速成形工艺参数对沉积层的影响[J].中国激光,2007,34(7):1014-1018. 被引量:39
  • 5陈传中 王文中 等.-[J].中国激光,1999,26(9):841-846.
  • 6倪文.矿物材料导论[M].北京:科学出版社,1999.
  • 7S. L. Campanelli, A. D. Ludovico, C. Bonserlo. Experimental analysis of the laser milling process parameters [J]. Journal of Materials Processing Technology, 2007,191 : 220 - 223.
  • 8Cheng Wang, Xiaoyan Zeng. Study of laser carving three - dimensional structures on ceramics: Quality controlling and mechanisms[J]. Optics & Laser Technology, 2007,39:1400 - 1405.
  • 9D.T. Pham, S. S. Dimov, P.V. Petkov. Laser milling of ceramic components[J]. Intemation Journal of Machine Tools & Manufacture, 2007,47:618 - 626.
  • 10J. S. Liu, L. J. Li, X. Z. Jin. Accuracy control of three - dimensional Nd:YAG laser shaping by ablation [J]. Optics & laser technology, 1999,31:419 - 423.

共引文献143

同被引文献201

引证文献21

二级引证文献146

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部