期刊文献+

嵌入式微结构光纤器件的制作与研究 被引量:2

Fabrication and Study of the Embedded Microstructure Fiber Device
原文传递
导出
摘要 提出了一种基于大芯径塑料包层光纤的嵌入式微结构光纤器件,该结构的锥区末端具有均匀的折射率分布与光场分布。理论分析结果表明,耦合系数随着锥区直径的减小呈现指数形式增大,增大锥区的长度可以使器件的损耗减小。实验上采用固定式加热方法和移动式加热方法分别制作了这种器件,使用移动大热区拉锥系统可以使锥区的长度增大近5倍。利用波长632.8nm的He-Ne激光,测试了该器件不同长度锥区的损耗,锥区长度为0.7cm时损耗约为2.63dB,而锥区长度为3.4cm时损耗约为1.06dB,锥区长度对器件损耗的影响与理论分析一致,可以通过改进器件的结构实现低损耗传输。 An embedded microstructure fiber device with large-core plastic cladding fibers inserted is presented. The refractive index profile of the taper end is uniform, and so is the power distribution. On the basis of the theoretical analysis, the coupling coefficient of the nearest-neighboring fibers is exponentially decreased with the decreasing diameter of the taper. The transmission loss of the device is lower when the length of the taper is longer. This kind of devices are fabricated by the fixed flame method and the movable flame method, respectively. The taper is elongated nearly five times by the movable large-hot-zone fiber-tapering system. The transmission loss of the two devices from one inserted fiber to the taper end is measured with He-Ne laser at about 632.8 nm wavelength. The loss values are about 2.63 dB with the taper length of 0.7 cm and 1.06 dB with the taper length of 3.4 cm. The influence of the taper length agrees with the theoretical analysis, and low-loss device can be achieved by improving the structure.
出处 《中国激光》 EI CAS CSCD 北大核心 2013年第6期204-209,共6页 Chinese Journal of Lasers
基金 国家自然科学基金(11078009 61107059) 中科院天文光学技术重点实验室开放基金资助课题
关键词 光纤光学 塑料包层光纤 拉锥 模式耦合 fiber optics plastic cladding fiber taper mode coupling
  • 相关文献

参考文献6

二级参考文献81

  • 1乔波,杨其华,王强.改进型分布式光纤水下输气管道泄漏检测仿真分析[J].中国计量学院学报,2011,22(2):114-119. 被引量:6
  • 2周琰,靳世久,张昀超,孙立瑛.分布式光纤管道泄漏检测和定位技术[J].石油学报,2006,27(2):121-124. 被引量:78
  • 3楼祺洪,周军,朱健强,王之江.高功率光纤激光器研究进展[J].红外与激光工程,2006,35(2):135-138. 被引量:69
  • 4H. Li, B. A. Standish, A. Mariampillai, N. R. Munce, Y. Mao, S. Chiu, N. E. Marcon, B. C. Wilson, A. Vitkin, and V. X. D. Yang, Lasers Surg. Med. 38, 754 (2006).
  • 5K. M. Tan, M. Mazilu, T. H. Chow, W. M. Lee, K. Taguchi, B. K. Ng, W. Sibbett, C. S. Herrington, C. T. A. Brown, and K. Dholakia, Opt. Express 17, 2375 (2009).
  • 6S. Han, M. V. Sarunic, J. Wu, M. Humayun, and C. Yang, J. Biomed. Opt. 13, 020505 (2008).
  • 7X. Li, J.-H. Han, X. Liu, and J. U. Kang, Appl. Opt. 47, 4833 (2008).
  • 8X. Liu, M. Balicki, R. H. Taylor, and J. U. Kang, Opt. Express 18, 24331 (2010).
  • 9K. Zhang, W. Wang, J. Han, and J. U. Kang, IEEE Trans. Biomed. Eng. 56, 2318 (2009).
  • 10J. U. Kang, J.-H. Han, X. Liu, K. Zhang, C. G. Song, and P. Gehlbach, IEEE J. Sel. Top. Quant. Electron. 16, 781 (2010).

共引文献27

同被引文献9

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部