期刊文献+

基于碲酸盐玻璃的新型双芯光子晶体光纤偏振分束器 被引量:9

Dual-Core Photonic Crystal Fiber Polarization Splitter Based on Tellurite Glass
原文传递
导出
摘要 设计了一种基于碲酸盐玻璃的双芯光子晶体光纤(PCF)偏振分束器,采用全矢量有限元法和模式耦合基本理论以及全矢量光束传播法对其特性进行了研究,并与相同结构参数的石英玻璃双芯光子晶体光纤偏振分束器的特性进行了对比。结果表明,此种偏振分束器有更高的消光比和极低的耦合损耗,在工作波长为1.55μm,光纤长度为441μm时,两偏振光实现分离,两个纤芯在x、y方向偏振光的消光比分别达到-50.1dB和-53.6dB,消光比小于-20dB的带宽分别为34nm和36nm,耦合损耗仅为0.0009dB。 A new kind of dual-core photonic crystal fiber (PCF) polarization splitter based on tellurite glass is designed. The full vector finite element method, coupled-mode theory and the full vector beam propagating method are emplyed to investigate the characteristics of the polarization splitter, meanwhile the quartz glass dual-core PCF polarization splitter with the same structural parameters is applied to compare. Numerical investigations demonstrate that the designed polarization splitter has higher extinction ratio and lower coupling loss. The two polarized lights are separated entirely with 441μm fiber at the wavelength of 1.55 μm and the extinction ratios in x and y polarization directions are - 50. 1 dB and - 53. 6 dB, respectively. When the extinction ratio is less than - 20 dB, the bandwidths are 34 nm and 36 nm respectively, and the coupling loss is only 0. 0009 dB .
出处 《中国激光》 EI CAS CSCD 北大核心 2013年第6期230-234,共5页 Chinese Journal of Lasers
基金 国家自然科学基金(61107052) 天津市高等学校科技发展基金计划(20110704)资助课题
关键词 光纤光学 光子晶体光纤偏振分束器 全矢量有限元法 消光比 光束传播法 fiber optics photonic crystal fiber polarization splitter full vector finite element method extinctionratio beam propagating method
  • 相关文献

参考文献18

二级参考文献85

共引文献70

同被引文献117

  • 1刘永兴,张培晴,许银生,戴世勋,王训四,徐铁峰,聂秋华.Ge_(20)Sb_(15)Se_(65)硫系玻璃光子晶体光纤的中红外色散特性[J].光子学报,2012,41(5):516-521. 被引量:12
  • 2娄淑琴,任国斌,延凤平,简水生.类矩形芯光子晶体光纤的色散与偏振特性[J].物理学报,2005,54(3):1229-1234. 被引量:22
  • 3K Saitoh, Y Sato, M Koshiba. Coupling characteristics of dual- core photonic crystal fiber couplers [J]. Opt Express, 2003, 11 (24) : 3188-3195.
  • 4Y J Chang, W L Li. Directional-coupler-based polarization splitting in asymmetric metal/multi-insulator configuration for optical nanocircuitry [J]. IEEE Photon Technol Lett, 2012, 24 (6) : 458-460.
  • 5J Saulnier, C Ramus, F Huet, et al.. Optical polarization diversity receiver integrated on titanium-diffused lithium niobate [J]. IEEEPhotonTechnolLett, 1991, 3(10): 926-928.
  • 6A Hassani, A Dupuis, M Skorobogatiy. Low loss porous terahertz fibers containing multiple subwavelength holes [J]. Appl Phys Lett, 2008, 92(7): 071101.
  • 7A Hassani, A Dupuis, M Skorobogatiy. Porous polymer fibers for low-loss terahertz guiding [J]. Opt Express, 2008, 16 (9) : 6340-6351.
  • 8S Atakaramians, S Afshar Vahid, B M Fischer, et al.. Porous fibers: a novel approach to low loss THz waveguides [J]. Opt Express, 2008, 16(12): 8845-8854.
  • 9J Bai, J Li, H Zhang, et al.. A porous terahertz fiber with randomly distributed air holes [J]. Appl Phys B, 2011, 103(2) : 381-386.
  • 10N Chen, J Liang, L Ren. High-birefringence, low loss porous fiber for single-mode terahertz-wave guidance [J]. Appl Opt, 2013, 52(21): 5297-5302.

引证文献9

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部