期刊文献+

近红外小动物活体荧光成像系统的研制 被引量:10

Research of Near-Infrared Small Living Animal Fluorescence Imaging System
原文传递
导出
摘要 小动物活体荧光成像系统是研究现代生物医学的有力手段之一,但是现有的荧光成像系统穿透深度低、信噪比不高,严重制约了荧光成像技术在生物医学中的应用。利用近红外Ⅱ区光(1000~1350nm)在生物组织中的穿透深和成像信噪比高的特点,研制出了一套高性能的近红外小动物活体荧光成像系统。模拟实验表明:该系统具有信噪比高(57dB)和穿透深度深(大于10mm)的特点。通过利用该近红外小动物活体荧光成像系统对静脉注射有Ag2S量子点(荧光发射波长为1200nm)的小鼠进行观察,获得了小鼠全身血管网络及深层组织器官的高分辨率图像。 Small animal fluorescence imaging system is an important tool in life sciences and medicine research because of its in vivo and noninvasive imaging ability. But the relative low penetration depth of the visible light of existing small animal imaging systems, as well as the relative low signal-to-noise, prevents this technology from deep tissue imaging. Fluorescence single in the second near-infrared window (NIR II, 1000~1350 nm) could be utilized to improve the imaging depth due to the relative low tissue scattering. The presented work describes the design and performance evaluation of a near-infrared small animal fluorescence imaging system working in this particular spectrum window. Simulation experiments indicate that this imaging system achieves a relative high signal-to-noise ratio (57 dB) and large penetration depth (deeper than 10 mm). Vascular networks and organ of the mouse are clearly visualized using this imaging system by injection of Ag2S quantum dots (QD) emitting at 1200 nm.
出处 《光学学报》 EI CAS CSCD 北大核心 2013年第6期239-244,共6页 Acta Optica Sinica
基金 国家973计划(YODAG21003) 中国科学院先导专项子课题(YIBXS12001)资助课题
关键词 成像系统 荧光成像 近红外Ⅱ区 活体小动物 imaging systems fluorescence imaging second near-infrared window small living animal
  • 相关文献

参考文献17

  • 1D.J.A.Margolis,J.M.Hoffman,R.J.Herfkens et al..Molecular imaging techniques in body imaging [J].Radiology,2007,245(2):333-356.
  • 2C.Bremer,V.Ntziachristos,R.Weissleder.Optical-based molecular imaging:contrast agents and potential medical applications [J].European Radiology,2003,13(2):231-243.
  • 3M.Yang,E.Baranov,X.M.Li et al..Whole-body and intravital optical imaging of angiogenesis in orthotopically implanted tumors [J].Proc.Natl.Acad.Sci.USA,2001,98(5):2616-2621.
  • 4F.F.Jobsis.Noninvasive,infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters [J].Science,1977,198(4323):1264-1267.
  • 5V.Ntziachristos,J.Ripoll,R.Weissleder.Would near-infrared fluorescence signals propagate through large human organs for clinical studies? [J].Opt.Lett.,2002,27(5):333-335.
  • 6B.Bednar,G.J.Zhang,D.L.Jr Williams et al..Optical molecular imaging in drug discovery and clinical development [J].Expert Opinion on Drug Discovery,2007,2(1):65-85.
  • 7A.M.Smith,M.C.Mancini,S.Nie.Bioimaging second window for in vivo imaging [J].Nature Nanotechnology,2009,4(11):710-711.
  • 8蒋星军,任彩萍.分子成像及其应用[J].生命科学,2005,17(5):456-460. 被引量:8
  • 9C.S.Gondi,K.K.Veeravalli,B.Gorantla et al..Human umbilical cord blood stem cells show PDGF-D-dependent glioma cell tropism in vitro and in vivo [J].Neuro-Oncology,2010,12(5):453-465.
  • 10C.Y.Chen,S.C.Baker,R.C.Darton.The application of a high throughput analysis method for the screening of potential biosurfactants from natural sources [J].J.Microbiological Methods,2007,70(3):503-510.

二级参考文献68

  • 1蔡志友(综述),晏勇(审校).阿尔茨海默病非转基因动物模型研究[J].实用医学杂志,2007,23(16):2614-2616. 被引量:4
  • 2Hasegawa S, Yang M, Chishima T, et al. In vivo tumor delivery of the green fluorescent protein gene to report future occurrence of metastasis. Cancer Gene Ther, 2000, 7(10): 1336-1340.
  • 3Bouvet M, Wang J, Nardin S R, et al. Real-time optical imaging of primary tumor growth and multiple metastatic events in a pancreatic cancer orthotopic model. Cancer Res,2002, 62(5): 1534-1540.
  • 4Zhang L, Adams J Y, Billick E, et al. Molecular engineering of a two-step transcription amplification (TSTA) system for transgene delivery in prostate cancer. Mol Ther, 2002, 5(3): 223-232.
  • 5Ray P, Pimenta H, Paulmurugan R, et al. Noninvasive quantitative imaging of protein-protein interactions in living subjects. Proc Natl Acad Sci USA, 2002, 99(5): 3105-3110.
  • 6Paulmurugan R, Umezawa Y, Gambhir S S. Noninvasive imaging of protein-protein interactions in living subjects byusing reporter protein complementation and reconstitution strategies. Proc Natl Acad Sci USA, 2002, 99(24):15608-15613.
  • 7Doubrovin M, Ponomarev V, Beresten T, et al. Imaging transcriptional regulation of p53-dependent genes with positron emission tomography in vivo. Proc Natl Acad Sci USA, 2001, 98(16): 9300-9305.
  • 8Carlsen H, Moskaug J O, Fromm S H, et al. In vivo imaging of NF-κB activity. J Immunol, 2002, 168(3): 1441-1446.
  • 9Uhrbom L, Nerio E, Holland E C. Dissecting tumor maintenance requirements using bioluminescence imaging of cell proliferation in a mouse glioma model. Nat Med, 2004, 10(11): 1257-1260.
  • 10Ponomarev V, Doubrovin M, Lyddane C, et al. Imaging TCR-dependent NFAT-mediated T-cell activation with positron emission tomography in vivo. Neoplasia, 2001, 3(6): 480-488.

共引文献19

同被引文献81

引证文献10

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部