期刊文献+

梯度变化对密度梯度蜂窝材料力学性能的影响 被引量:20

Influences of density gradient variation on mechanical performances of density-graded honeycomb materials
下载PDF
导出
摘要 为确定一定质量蜂窝材料的密度梯度大小对材料能量吸收性能的影响,基于二维圆环系,通过改变圆环的壁厚,建立了具有不同密度梯度的二维密度梯度圆环蜂窝材料模型。在此基础上讨论了不同冲击速度下,密度梯度大小对蜂窝材料能量吸收特性的影响。研究结果表明,对于相对密度从冲击端到固定端递减的情况,在高速冲击条件下,梯度系数越大,材料单位质量的能量吸收率越高。研究结果可为完善密度梯度蜂窝材料动力学性能的设计提供参考。 Based on the two-dimensional ring system, a computational model was developed for densi ty-graded circular honeycomb materials by changing the wall thicknesses of the rings. And further discussion was carried out for the influences of the density gradient variation on the energy-absorption performances of the density-graded honeycomb materials impacted by the rigid plate at different veloc- ities. The results show that for the honeycomb material with the relative density decreasing from the impact end to the fixed end, under a high-velocity impact, the higher the density gradient, the more the energy absorbed per unit mass.
作者 吴鹤翔 刘颖
出处 《爆炸与冲击》 EI CAS CSCD 北大核心 2013年第2期163-168,共6页 Explosion and Shock Waves
基金 国家自然科学基金项目(10972028 11272046) 教育部新世纪人才资助计划(NCET-11-0566) 中央高校基本科研业务费专项基金项目~~
关键词 固体力学 梯度系数 LS-DYNA 密度梯度圆环蜂窝材料 能量吸收 面内冲击 solid mechanics density gradient LS-DYNA density graded circular honeycombs ener gy absorption in-plane impact
  • 相关文献

参考文献12

  • 1Gupta N.A functionally graded syntactic foam material for high energy absorption under compression[J].Materials Letters,2007,61(4/5):979-982.
  • 2Zeng H B,Pattofatto S,Zhao H,et al.Impact behaviour of hollow sphere agglomerates with density gradient[J].International Journal of Mechanical Sciences,2010,52(5):680-688.
  • 3刘颖,何章权,吴鹤翔,张新春.分层递变梯度蜂窝材料的面内冲击性能[J].爆炸与冲击,2011,31(3):225-231. 被引量:26
  • 4张新春,刘颖.密度梯度蜂窝材料动力学性能研究[J].工程力学,2012,29(8):372-377. 被引量:24
  • 5Liu Ying,Wu He-xiang,Lu G X,et al.Dynamic properties of density graded thin-walled metal hollow sphere arrays[J].Mechanics of Advanced Materials and Structures,dio:10.1080/15376494.2011.627642.
  • 6Liu Ying,Wu He-xiang,Wang Bin.Gradient design of metal hollow sphere (MHS) foams with density gradients[J].Composites:Part B,2012,43(3):1346-1352.
  • 7LSTC.LS-DYNA keyword user's manual[M].Livermore Software Technology Corporation,2007.
  • 8Gibson L J.Mechanical behaviour of metallic foams[J].Annual Review of Materials Science,2000,30(1):191-227.
  • 9Tan P J,Reid S R,Harrigan J J,et al.Dynamic compressive strength properties of aluminum foams.Part Ⅱ-Shock theory and comparison with experimental data and numerical models[J].Journal of the Mechanics and Phys ics of Solids,2005,53(10):2206-2230.
  • 10Tan P J,Reid S R,Harrigan J J,et al.Dynamic compressive strength properties of aluminium foam.Part Ⅰ-Experimental data and observations[J].Journal of the Mechanics and Physics of Solids,2005,53(10):2174-2205.

二级参考文献23

  • 1Lu G X, Yu T X. Energy absorption of structures and materials [M]. Cambridge: CRC Press, Woodhead Publishing Limited, 2003: 8-18..
  • 2Gibson L J, Ashby M F. Cellular solids: Structure and properties [M]. 2nd ed. Cambridge: Cambridge University Press, 1997: 87-148.
  • 3H?nig A, Stronge W J. In-plane dynamic crushing of honeycombs. Part I: Crush band initiation and wave trapping [J]. International Journal of Mechanical Sciences, 2002, 44(8): 1665-1696.
  • 4Ruan D, Lu G, Wang B, et al. In-plane dynamic crushing of honeycombs-a finite element study [J]. International Journal of Impact Engineering, 2003, 28(2): 161-182.
  • 5Zou Z, Reid S R, Tan P J, et al. Dynamic crushing of honeycombs and features of shock fronts [J]. International Journal of Impact Engineering, 2009, 36(1): 165-176.
  • 6Zheng Z J, Yu J L, Li J R. Dynamic crushing of 2D cellular structures: A finite element study [J]. International Journal of Impact Engineering, 2005, 32(1/2/3/4): 650-664.
  • 7Ajdaria A, Canavanb P, Nayeb-Hashemia H, et al. Mechanical properties of functionally graded 2-D cellular structures: A finite element simulation [J]. Materials Science and Engineering A, 2009, 499(1/2): 434-439.
  • 8Gupta N. A functionally graded syntactic foam material for high energy absorption under compression [J]. Materials Letters, 2007, 61(4/5): 979-982.
  • 9Liang C, Kiernan S, Gilchrist M D. Designing the energy absorption capacity of functionally graded foam materials [J]. Materials Science and Engineering A, 2009, 507(1/2): 215-225.
  • 10Kooistra G W, Deshpande V S, Wadley H N G. Compressive behavior of age hardenable tetrahedral lattice truss structures made from aluminum [J]. Acta Materialia, 2004, 52(14): 4229-4237.

共引文献42

同被引文献84

引证文献20

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部