期刊文献+

基于亮度直方图匹配的运动目标检测算法 被引量:2

Moving object detection algorithm based on matching of brightness histogram
下载PDF
导出
摘要 提出了一种亮度直方图匹配的运动目标检测算法,采用相邻两帧各子块的直方图匹配程度检测运动目标,通过自适应的最大阈值方差法来选取阈值,在HSV色度空间下检测阴影,用形态学方法进行后处理,得到准确的运动目标;实验结果表明该方法是快速有效的。 This paper introduces a moving object detection algorithm based on the brightness histogram match. It uses the matching degree of the adjacent two frames block' s brightness histogram to detect the moving object, selects the threshold through the adaptive biggest threshold variance method, detects shadow in the HSV color space, and gets the exact moving object after pro- cessing by the morphological method. The experiment results show that the presented method is fast and effective.
出处 《计算机工程与应用》 CSCD 2013年第12期148-150,共3页 Computer Engineering and Applications
基金 重庆市教育委员会基金项目(No.KJ080521)
关键词 直方图匹配 最大阈值方差法 HSV色度空间 形态学方法 histogram matching biggest threshold variance HSV color space mathematical morphological method
  • 相关文献

参考文献8

二级参考文献33

  • 1毛燕芬,施鹏飞.一种核密度估计动态场景建模算法[J].数据采集与处理,2004,19(4):391-394. 被引量:5
  • 2毛燕芬,施鹏飞.高斯核密度估计背景建模及噪声与阴影抑制[J].系统仿真学报,2005,17(5):1182-1184. 被引量:10
  • 3PAVLIDIS I, MORELLAS V, TSIAMYRTZIS P, et al. Urban surveillance systems: From the laboratory to the cornmercialworld[J]. Proceedings of the IEEE,2001,89(10):1478-1497.
  • 4MEYER D, DENZLER J, NIEMANN H. Model based extraction of articulated objects in image sequences for gait analysisEJ3. Pro IEEE International Conference on Image Processing, 1997,3(26/29):78-81.
  • 5TOYAMA K, KRUMM J, BRUMTT B, et al. Wallflower: Principles and practice of background maintenance[J]. Proceedings of IEEE International Conference on Computer Vision, 1999,1:255-261.
  • 6STAUFFER C,GRIMSON W E L. Learning patterns of activity using realtime tracking[J]. IEEE Transactions on Pattern analysis and Machine Intelligence, 2000,22 (8) : 747-757.
  • 7ELGAMMAL A M, HANVOOD D, DAVIS L S. Non-parametric model for background subtraction[M]. London: Springer-Verlag, 2000 : 751-767.
  • 8[4]Shi J S,Tomasi C.Good Features to Track[C]// IEEE Conference on Computer Vision and Pattern Recognition(CVPR).USA:Seatlle,1994.
  • 9[6]Lipton A,Fujiyoshi H,Patic.Moving Target Classification and Tracking from Real-Time Video[C]//New York:IEEE Workshop Application and Computer Vision(WACE),1998.
  • 10[8]Javed O,Shah M.Tracking and Object Classification for Automated Surveillance[C]//Berlin,Germany.The Sevench European Conference on Computer Vision(ECCV),2002.

共引文献271

同被引文献11

引证文献2

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部