期刊文献+

最大后验概率自适应方法在口令识别中的应用 被引量:1

Maximum A Posteriori adaptation in password recognition
下载PDF
导出
摘要 自适应技术是提高非特定人语音识别系统识别性能的有效手段,其中应用最广泛的两种自适应方法是基于最大后验概率的自适应方法和基于最大似然线性回归的自适应方法,分析了它们各自的特点并将最大后验概率的自适应方法应用到基于隐马尔可夫模型的口令识别系统中,实验结果表明,该方法能够在每个词自适应一次的情况下,使系统的识别率由40%提高到90%以上,并在此基础上实现了一个实用的中等词汇量的口令识别系统。 Adaptation technologies are the effective means of improving the performance of the speaker independent speech recog- nition system. Two of the most widely used adaptation methods are Maximum Likelihood Linear Regression(MLLR) and Maxi- mum A Posteriori (MAP). This paper analyzes their features and through experiments on MAP probability in the parameter and the data selection, how to improve the effectiveness of the speaker adaptation is discussed. Experimental results show that the method is an efficient adaptation approach in this system. The system accuracy rate is increased from 40% to more than 90% by on- ly a few data. On this basis, it realizes a practical medium vocabulary password recognition system.
出处 《计算机工程与应用》 CSCD 2013年第12期164-167,共4页 Computer Engineering and Applications
关键词 口令识别 最大后验概率自适应 最大似然回归自适应 password recognition Maximum A Posteriori adaptation maximum likelihood linear regression
  • 相关文献

参考文献7

  • 1Miastkowski S.Can we talk?Voice-recognition packages[J].PC World, 1999,17( 1 ) : 127-136.
  • 2Huang X, Acero A, Alleva F, et al.Microsoft windows highly intelligent speech recognizer:whisper[C]//ICASSP-95.New York: IEEE, 1995, 1 : 93-96.
  • 3Cox S.Predictive speaker adaptation-in speech recognition[J]. Computer Speech and Language, 1995,9( 1 ) : 1-17.
  • 4Leggetter C J, Woodland P C.Maximum likelihood linear regression for speaker adaptation of continuous density hidden Markov models[J].Computer Speech and Language, 1995,9: 171-185.
  • 5Gauvain J L, Lee C H.Maximum a posteriori estimation for multivariate Gaussian observations[J].IEEE Trans on Speech and Audio Processing,1994,2(2):291-298.
  • 6Bilmes J.What HMMs can do[Z].Seattle, WA: Dept of EE, University of Washington, 2006.
  • 7Shinoda K,Lee C H.Structural MAP speaker adaptation using hierarchical priors[C]//Proc of IEEE Workshop on Speech Rec- ognition and Understanding Workshop.Santa Barbara,CA: [s.n.], 1997:381-388.

同被引文献4

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部