期刊文献+

应用分形维数的自适应张量投票算法

Adapted tensor voting algorithm according to fractal dimension
下载PDF
导出
摘要 张量投票算法是感知聚类方法中一种比较常用的计算方法,可以应用到图像处理等各个方面,具有较强的鲁棒性,非迭代等特性。张量投票算法中尺度参数的自适应选取对于投票域的建立起着至关重要的作用。通过分形维数来选取尺度参数,建立了尺度参数与分形维数的关系,提出了基于分形维数的自适应张量投票算法,并将该方法应用于图像的线特征提取和边缘修复。与传统的张量投票算法进行比较,该方法在图像线特征提取和边缘修复方面获得了较好的实验结果。 Tensor voting algorithm with strong robustness and non-iteration is a common computing method in perceptual group- ing and it is wildly used in image processing. Selecting the scale parameter adaptively in tensor voting algorithm plays an important role in creating the voting fields. In this paper, the scale parameter is selected by fractal dimension. The relationship between scale parameter and fractal dimension is established and then, the adapted tensor voting algorithm based on fractal dimension is proposed. The proposed method is applied in line feature extraction and edge inpainting. The better experimental results are obtained in line feature extraction image and edge repair by the comparison of the proposed method and conventional tensor voting algorithm.
出处 《计算机工程与应用》 CSCD 2013年第12期168-171,共4页 Computer Engineering and Applications
基金 国家自然科学基金(No.60971127) 西安理工大学高层次人员启动基金(No.108-210905) 陕西省教育厅科研计划项目(No.09JK617)
关键词 感知聚类 张量投票算法 分形维数 尺度参数 perceptual grouping tensor voting algorithm fractal dimension scale parameter
  • 相关文献

参考文献14

  • 1董鸿燕,沈振康,罗军,张志龙,倪为平.感知编组综述[J].计算机工程与应用,2007,43(14):9-13. 被引量:10
  • 2Guy G, Medioni G.lnferring global perceptual contours from local fcatures[J].lnternational Journal of Computer Vision, 1993,20( 1 ): 113-133.
  • 3Medioni G, Lee M S, Tang C K.A computational frame- work tbr feature extraction and segmentation[M].New York: Elsevicr, 2000 : 33-64.
  • 4邵晓芳,孙即祥.改进的张量投票算法[J].计算机辅助设计与图形学学报,2006,18(7):1028-1031. 被引量:11
  • 5Loss L, Bebis G,Nicolescu M,et al.An iterative multi-scale tensor voting scheme for perceptual grouping of natural shapes in cluttered backgrounds[J].Computer Vision and Image Understanding,2009, 113( 1 ) : 126-149.
  • 6Tong W.Tang C K. Medioni G.First order tensor voting and application to 3-D scale analysis[C]//CVPR.2001:175-182.
  • 7胡水祥,羹东军.基于张量投票的图像超分辨率算法[J].中南大学信息科学与工程学学报,2010,11(5):87-90.
  • 8Moreno R, Garcia M A, Puig D, et al.Robust color edge detection through tensor voting[C]//ICIP, 2009 : 2153-2156.
  • 9Dinh T N. Park J, Lee C. et al.Tensor voting based color clustering[C]//ICPR, 2010 : 597-600.
  • 10Lim J, Park J, Medioni G.Text segmentation in color images using tensor voting[J].lmage and Vision Computing, 2007, 25(5):671-685.

二级参考文献54

  • 1汪荣贵,张佑生,高隽,彭青松.基于Bayes网络的航空图象理解模型[J].中国科学技术大学学报,2004,34(6):745-756. 被引量:3
  • 2汪行,陈学佺,金敏.线段提取在高分辨率遥感图像建筑物识别中的应用[J].计算机辅助设计与图形学学报,2005,17(5):928-934. 被引量:11
  • 3邵晓芳,姚伟,孙即祥,季虎.基于视觉竞争合作机制的主观轮廓提取[J].中国图象图形学报,2005,10(8):1024-1028. 被引量:5
  • 4David A F, Jean P. Computer vision: a modern approach [M]. New York: Prentice Hall, 2002
  • 5Canny J F. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6) :679
  • 6Gilles A, Pierre K. Mathematical problems in image processing: partial differential equations and the calculus of variations [M]. Berlin: Springer-Verlag, 2002
  • 7Soille P. Morphological image analysis: principles and applications (2 edition) [M]. New York: SpringerVerlag, 2003
  • 8Medioni G, Lee M S, Tang C K. A computational framework for feature extraction and segmentation[M].New York: Elsevier, 2000Jiaya J, Tang C K. Image repairing: robust image synthesis by adaptive ND tensor voting [M]. Wisconsin:IEEE Computer Society, 2003Sylvain F, Pierre B, Heiko N, et al. Are iterations and curvature useful for tensor voting [M]//Pajdla T, Matas J. Proceedings of 8th European Conference on Computer Visior. Prague: IEEE Computer Society, 2004
  • 9Kanizsa G.Subjective contours[J].Scientific American,1976,234:48-52
  • 10Shashua A,Ullman S.Structural saliency:the detection of globally salient structures using a locally connected network[C]//The Second International.Conference on Computer Vision,Clearwater,FL,1988:321-327

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部