期刊文献+

硝酸改性活性炭纤维负载TiO_2及其催化降解甲苯性能 被引量:4

Toluene Photocatalytic Degradation on TiO_2 Loaded on Nitrate-Modified Activated Carbon Fiber
下载PDF
导出
摘要 将TiO2负载于经硝酸改性的活性炭纤维(ACF)上得到TiO2/ACF复合催化剂,采用扫描电镜(SEM)、X射线光电子能谱(XPS)、紫外激光拉曼光谱(Raman)和X射线衍射(XRD)等手段研究其形貌,并考察环境湿度、ACF硝化强度和TiO2负载量对甲苯光催化氧化降解的影响。结果表明:经硝酸改性的ACF表面富含含氧基团,能使TiO2在其表面均匀分布,从而使甲苯转化率提高近3.5倍;随环境湿度上升,甲苯转化率先上升后下降,主要是因为湿度上升,吸水量上升,导致甲苯吸附量下降;ACF硝化强度增大,导致催化剂吸水能力增强,从而提高甲苯转化率;TiO2负载量上升导致ACF表面TiO2颗粒形貌改变,使甲苯转化率先上升后下降。 TiO2/ACF catalysts were synthesized by depositing TiO2 on activated carbon fiber (ACF) modified by nitric acid. The physical properties were characterized by X-ray diffraction spectrum (XRD), scanning electronic microscopy (SEM), Raman Spectrum and X-ray photoelectron spectroscopy (XPS). The effects of humidity, nitrification extent of ACF, and TiO2 loading on toluene photocatalytic degradation were investigated. The results showed that nitrification introduced rich oxygen-containing groups into ACF surface, which could lead to a more uniform TiO2 distribution and about 3.5 fold of toluene conversion. With the increase of humidity, the toluene conversion first increased then decreased. This was due to the fact that a high humidity resulted in a high water adsorption amount on the catalyst, therefore, reducing the toluene adsorption capacity. With the increase of nitrification extent of ACF, the toluene conversion increased due to the enhanced water adsorption capacity. With the increase of TiO2 loading, the toluene conversion first increased and then decreased too, because a high TiO2 loading changed the particle morphology on the catalyst surface.
出处 《化学反应工程与工艺》 CAS CSCD 北大核心 2013年第2期125-133,共9页 Chemical Reaction Engineering and Technology
基金 国家自然科学基金(21276223) 国家863高技术研究发展计划(2010AA064905) 浙江省重点科技创新团队计划(2009R50020)
关键词 二氧化钛 活性炭纤维 硝化 甲苯光催化降解 silicon dioxide activated carbon fiber nitrification toluene photocatalytic degradation
  • 相关文献

参考文献16

  • 1Egcrton T A, Mattinson J A. The influence of platinum on UV and "visible" photocatalysis by futile and Degussa P25[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 194(2-3): 283-289.
  • 2Anpo M, Dohshi S, Kitano M, et al. The preparation and characterization of highly efficient titanium oxide-based photofunctional materials[J]. Annual Review of Materials Research, 2005, 35: 1-27.
  • 3Liao D L, Badour C A, Liao B Q. Preparation of nanosized TiO:/ZnO composite catalyst and its photocatalytic activity for degradation of methyl orange[J]. Journal of Photochemistry and Photobiology A-Chemistry, 2008, 194( 1): 11 - 19.
  • 4Wu L, Yu J C, Fu X Z. Characterization and photocatalytic mechanism of nanosized CdS coupled TiO., nanocrystals under visible light irradiation[J]. Journal of Molecular Catalysis Chemical, 2006, 244(1-2): 25-32.
  • 5Ao C H, Lee S C. Indoor air purification by photocatalyst TiO2 immobilized on an activated carbon filter installed in an air cleaner[J]. Chemical Engineering Science, 2005, 60: 103-109.
  • 6Tryba B, Morawski A W, lnagaki M. A new route for preparation of TiO2-mounted activated carbon[J]. Applied Catalysis B: Environmental, 2003, 46: 203-208.
  • 7Shi J W, Zheng J T, Peng W, et al. Immobilization of TiO2 films on activated carbon fiber and their photocatalytic degradation properties for dye compounds with different molecular size[J]. Catalysis Communications, 2008, 9:1846-1850.
  • 8Guo Ting, Bai Zhipeng, Wu Can, et al. Influence of relative humidity on the photocatalytic oxidation (PCO) of toluene by TiO2, loaded on activated carbon fibers: PCO rate and intermediates accumulation[J]. Applied Catalysis B:Environmental, 2008, 79:171-178.
  • 9任建莉,叶素娟,陈俊杰,平传娟,周劲松.活化处理活性炭纤维的表面特性及其汞吸附性能[J].环境科学学报,2010,30(7):1410-1417. 被引量:17
  • 10Demeesterea K, Dewulfa J, de Witte B, et al. Heterogeneous photocatalytic removal of toluene from air on building materials enriched with TiO2[J]. Building and Environment, 2008:406-414.

二级参考文献17

  • 1FengW G, Kwon S K, Feng X, et al. 2006. Sulfur impregnation on activated carbon fibers through H2 S oxidation for vapor phase mercury removal [ J]. Journal of Environmental Engineering, 132 (3) : 292--300.
  • 2Grcgg S J, Sing K S. 1982. Adsorption, Surface Area and Porosity [ M ]. London : Academic Press. 4.
  • 3Huggins F E, Yap N, Huffman G P, et al. 2003. XAFS characterization of mercury captured from combustion gases on sorbents at low temperatures[ J]. Fuel Processing Technology, 82:167--196.
  • 4Hutson N D, Atwood B C, Scheckel K G. 2007. XAS and XPS characterization of mercury binding on brominated activated carbon [ J]. Environmental Science Technology, 41 (5) : 1747--1752.
  • 5Li Y H, Lee C W, Gullett B K. 2002. The effect of activated carbon surface moisture on low temperature mercury adsorption [ J ]. Carbon, 40( 1): 65--72.
  • 6Li Y H, Lee C W, Gullett B K. 2003. Importance of activated carbon's oxygen surface functional groups on elemental mercury adsorption [J]. Fuel, 82(4):451-457.
  • 7Pavlish H J, Sondreal E A, Mann M D, et al. 2003. Status review of mercury control option for coal-fired power plants [ J ]. Fuel Processing Technology, 82:89--165.
  • 8Thermo Fisher Scientific. 2000. Database for surface spectroscopes as XPS,AES and UPS [ OL ]. 2009-10- 20, http : //www. lasurface. com/database/elementxps, php.
  • 9杨全红,郑经堂,王茂章,张碧江.由含氮官能团的演变考察PAN—ACF的改性[J].炭素,1998(1):26-28. 被引量:4
  • 10杨全红,郑经堂,王茂章,张碧江.微孔炭的纳米孔结构和表面微结构[J].材料研究学报,2000,14(2):113-122. 被引量:30

共引文献16

同被引文献35

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部