期刊文献+

酸水解法分离玉米芯中五碳糖和六碳糖的动力学

Kinetics of Dilute Acid Hydrolysis of Corn Cob for Pentose and Hexose Separation
下载PDF
导出
摘要 以玉米芯为底物,采用间歇反应釜,在固液比为0.1g/mL,一定硫酸浓度(质量分数为0.1%~O.9%)和温度(130~170℃)下反应,建立酸水解动力学模型,通过非线性回归拟合获得模型参数。结果表明:较低温度和硫酸浓度可增大五糖碳收率和玉米芯中六碳糖保留率。合适的反应条件为130℃,H2S04的质量分数为O.1%,反应82min时,溶液中五碳糖浓度为36.2g/L,五糖碳收率为90.7%,玉米芯中戊聚糖水解率为97.6%,六碳糖保留率为96.9%。 Kinetic model of dilute acid hydrolysis was established with corn cob as substrate in a batch reactor under the operating conditions of, mass fraction of sulfuric acid of 0.1%-0.9%, solid to liquid ratio of 0.1 g/mL, and reaction temperature of 130-170 ℃. The nonlinear data regression method was used for the parameter fitting. The results showed that the pentose yield and hexose retain rate were favored at low reaction temperature and low acid concentration. Under the reaction temperature of 130℃, mass fraction of H2SO4 concentration 0.1%, and reaction time 82 rain, the pentose concentration was 36.2 g/L, the pentose yield reached 90.7%, the pentosan hydrolysis rate of corn cob was 97.6%, and the hexose retain rate was 96.9%.
出处 《化学反应工程与工艺》 CAS CSCD 北大核心 2013年第2期181-187,共7页 Chemical Reaction Engineering and Technology
基金 国家自然科学基金项目(20976130 21276192)
关键词 酸水解 玉米芯 动力学模型 五碳糖 六碳糖 acid hydrolysis corn cob kinetic model pentose hexose
  • 相关文献

参考文献14

  • 1Hahn-Hagerdal B, Galbe M, Gorwa-Grauslund M F, et al. Bio-ethanol-the fuel of tomorrow from the residues of today[J]. Trends in Biotechnology, 2006, 24(12): 549-556.
  • 2Huber G W, Iborra S, Corma A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering[J]. Chemical Reviews, 2006, 106(9): 4044-4098.
  • 3Zhang M J, Wang F, Su R X, et al. Ethanol production from high dry matter corncob using fed-batch simultaneous saccharifieation and fermentation after combined pretreatment[J]. Bioresource Technology, 2010, 101(13): 4959-4964.
  • 4Guerra-Rodriguez E, Portilla-Rivera O M, Jarquin-Enriquez L, et al. Acid hydrolysis of wheat straw: a kinetic study[J]. Biomass & Bioenergy, 2012, 36: 346-355.
  • 5Runge T, Zhang C. Two-stage acid-catalyzed conversion of carbohydrates into levulinic acid[J]. Industrial & Engineering Chemistry Research, 2012, 51(8): 3265-3270.
  • 6Yat S C, Berger A, Shonnard D R. Kinetic characterization for dilute sulfuric acid hydrolysis of timber varieties and switchgrass[J]. Bioresource Technology, 2008, 99(9): 3855-3863.
  • 7Kumar R, Mago G, Balan V, et al. Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies[J]. Bioresource Technology, 2009, 100(17): 3948-3962.
  • 8Kim J S, Choi W I, Kang M, et al. Kinetic study of empty fruit bunch using hot liquid water and dilute acid[J]. Applied Blociaemlstry ana Biotechnology, 2012, 167(6): 1527-1539.
  • 9Sluiter J B, Ruiz R O, Searlata C J, et al. Compositional analysis of lignocellulosic feedstocks 1: review and description of methods[J]. Journal of Agricultural and Food Chemistry, 2010, 58(16): 9043-9053.
  • 10Torget R W, Kim J S, Lee Y Y. Fundamental aspects of dilute acid hydrolysis/fractionation kinetics of hardwood carbohydrates 1: cellulose hydrolysis[J]. Industrial & Engineering Chemistry Research, 2000, 39(8): 2817-2825.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部