摘要
提出了一种新的基于小波奇异性的结构故障检测方法.通过对传感器检测信号进行二进离散小波变换,采用模极大值算法对信号进行去噪滤波,同时根据小波变换模极大值在不同尺度下的分布来完成故障的检测与定位.该方法可有效抑制噪声对残差信号的影响,提高故障检测的鲁棒性.最后,针对歼击机的结构故障进行了仿真,仿真结果表明了本文方法的有效性。
A new type of fault diagnosis strategy based on wavelet singularity detection is presented in this paper. In this method, the signal is firstly processed by discrete binary wavelet transform. It is then denoised through modulus maxima algorithm, and fault detection and positioning is completed by the modulus maxima point distribution in wavelet transformation. This method can evidently eliminate the affection of noise on residual signal and improve the robustness of fault detection. Finally, this method is applied to the fighter's structure fault detection. Simulation results show that the presented method is effective.
出处
《应用科学学报》
CAS
CSCD
2000年第3期198-201,共4页
Journal of Applied Sciences
基金
国家自然科学基金!(69974021)
航空科学重点基金!(98z51002)
关键词
故障诊断
小波分析
奇异性检测
歼击机
fault diagnosis: wavelet analysis
singularity detection
fighter