期刊文献+

中国高新区产业政策与制度变迁的效应研究——基于贝叶斯网络方法的情景分析 被引量:3

Research on China's High-tech Zone Industical Policies and the Effect of Institutional Changes:Based on Sceran Analysis of Bayesian Network Method
下载PDF
导出
摘要 本文提出一个应用贝叶斯网络模型对宏观区域政策与高新技术产业政策使用效果进行情景分析的决策框架。中国高新技术产业开发区的建立和发展很大程度上依赖于政府政策,然而先前对影响中国高新区发展因素的研究主要集中在禀赋因素,如固定资产投资额或从业员工人数等,缺乏对制度性因素如省级高新区"升级"成国家级这一制度变迁效应的实证考察。对此,本文借助贝叶斯网络静态情景分析方法探讨制度因素与高新区成长之间的关系,结果显示:制度因素在中国高新区发展中起到关键作用,省级高新区"升级"政策如果结合加大R&D经费投入将会促进高新区成长。 The study of high - tech zones or science parks is not a fresh topic, but the previous studies have a blank field to fill. Most of these researches focus on the crucial factors of endowments that contribute to the growth of high - tech zones, seldom with the institutional factor. But the institutional factor is crucial for high -tech zones especially in China. Because of this, this paper introduced Bayesian network model to construct the driving mechanism of the growth of high - tech zones and discussed the results of the “upgrade” policy and gave suggestions for future studies. The conclusions showed that the “upgrade” policy evolution combined with the increased input in R&D are effective for the growth of high - tech zones in China in the long run.
出处 《产经评论》 2013年第3期5-15,共11页 Industrial Economic Review
关键词 贝叶斯网络 情景分析 产业政策 高新区 Bayesian network scenario analysis industrial policy high-tech zone
  • 相关文献

参考文献13

  • 1罗晖.我国高新区增长因素的实证分析[J].科研管理,2006,27(2):65-71. 被引量:15
  • 2罗晖,陈宏曲.我国高新区增长因素的聚类分析[J].管理观察,2006(2):57-60. 被引量:2
  • 3王国新.集群要素禀赋、集群间关系与集群成长——基于54个高新技术开发区的实证研究[J].科研管理,2010,31(5):131-140. 被引量:9
  • 4姜彩楼,徐康宁.区位条件、中央政策与高新区绩效的经验研究[J].世界经济,2009,32(5):56-64. 被引量:39
  • 5Cain,Jeremy. Planning Improvements in Natural Resources Management: Guidelines for Using Bayesian Networks to Support the Planning and Management of Development Programmes in the Water Sector and Beyond[ M]. Crowmarsh Gifford, Wall- ingford, Oxon, OX108BB, UK: Centre for Ecology and Hydrology, 2001.
  • 6Gupta, Sumeet, Kim, Hee. W.. Linking Structural Rquation Modeling to Bayesian Networks: Decision Support for Customer Retention in Virtual Communities [ J ]. European Journal of Operational Research,2008,190 (3) :818 - 833.
  • 7Aktas,Emel, Ulengin, Fusun, Onsel Sahin, Sule . A Decision Support System to Improve the Efficiency of Resource Alloca- tion in Healthcare Management [ J ]. Socio - Economic Planning Science, 2007,41 (2) : 130 - 146.
  • 8Ulengin,Fusun, Onsel,Sule, Topcu, Y. Ilker, Aktas, Emel, Kabak, Ozgur. An Integrated Transportation Decision Support System for Transportation Policy Decisions : The Case of Turkey [ J ]. Transportation Research Part A : Policy and Practice, 2007,41(1) :80 -97.
  • 9Lauria,Eitel J. M. , Duchessi,Peter. J.. A Bayesian Belief Network for IT Implementation Decision Support[ J]. Decision Support Systems,2006,42(3) :1573 - 1588.
  • 10Kisioglu, Pinar, Topcu,Y. Ilker. Applying Bayesian Belief Network Approach to Customer Churn Analysis: A case Study on the Telecom Industry of Turkey[ J]. Expert Systems with Applications,2011,38(6) :7151 -7157.

二级参考文献28

共引文献57

同被引文献47

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部