摘要
为克服传统盲源分离算法分离效果差、计算量大且输出信号尺度模糊的缺点,提出了一种新型频域快速盲源分离算法。该算法在分析时域水声信号混合模型的基础上,构建新型频域混合模型,采用混合神经网络计算某一频率的分离矩阵,以此来估计全局分离矩阵。新算法较好地克服了尺度模糊问题,极大地减小了计算量,增加了分离算法的灵活性,分离性能较好。水声信号仿真实验和湖试实验均验证了算法的有效性。
A novel fast blind source separation algorithm in frequency domain is proposed to o- vercome the shortcomings of traditional blind source separation algorithms, including poor per- formance, high computational complexity, and ambiguity of output signal. In the proposed al- gorithm, a new mix model in frequency domain is accepted based on the mixmodel of underwa- ter in time domain, then the global separated matrix is achieved by the separated matrix at some frequency computed by the multineural network. The novel algorithm has qualities of true scales, less computational complexity and flexible separation. The validity of the proposed al- gorithm is proved by simulations in underwater acoustic channel and lake experiments.
出处
《数据采集与处理》
CSCD
北大核心
2013年第3期261-266,共6页
Journal of Data Acquisition and Processing
基金
国家自然科学基金(10904160)资助项目
关键词
水声通信
新型混合模型
混合神经网络
短时傅里叶变换
underwater acoustic communication
new mix model
multineural network
short-time Fourier transform