期刊文献+

一种新型频域快速盲分离算法 被引量:3

Novel Fast Blind Source Separation Algorithm in Frequency Domain
下载PDF
导出
摘要 为克服传统盲源分离算法分离效果差、计算量大且输出信号尺度模糊的缺点,提出了一种新型频域快速盲源分离算法。该算法在分析时域水声信号混合模型的基础上,构建新型频域混合模型,采用混合神经网络计算某一频率的分离矩阵,以此来估计全局分离矩阵。新算法较好地克服了尺度模糊问题,极大地减小了计算量,增加了分离算法的灵活性,分离性能较好。水声信号仿真实验和湖试实验均验证了算法的有效性。 A novel fast blind source separation algorithm in frequency domain is proposed to o- vercome the shortcomings of traditional blind source separation algorithms, including poor per- formance, high computational complexity, and ambiguity of output signal. In the proposed al- gorithm, a new mix model in frequency domain is accepted based on the mixmodel of underwa- ter in time domain, then the global separated matrix is achieved by the separated matrix at some frequency computed by the multineural network. The novel algorithm has qualities of true scales, less computational complexity and flexible separation. The validity of the proposed al- gorithm is proved by simulations in underwater acoustic channel and lake experiments.
出处 《数据采集与处理》 CSCD 北大核心 2013年第3期261-266,共6页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(10904160)资助项目
关键词 水声通信 新型混合模型 混合神经网络 短时傅里叶变换 underwater acoustic communication new mix model multineural network short-time Fourier transform
  • 相关文献

参考文献10

  • 1冉茂华,黄建国,韩晶.滤波多音调制水声通信方法研究[J].兵工学报,2011,32(4):452-458. 被引量:2
  • 2Mansour A. Challenges and methodologies in passive ocean acoustic tomography: an approach based on ICA[C]//4th IEEE International Conference on Dig- ital Ecosystems and Technologies. Dubai, Arab: [-s. n. 1,2010..557-562.
  • 3理华,郝程鹏,侯朝焕,马晓川,杨俊.一种应用于水声目标检测的盲源分离算法[J].数据采集与处理,2008,23(B09):6-11. 被引量:4
  • 4何继爱,达正花,唐艳娟.基于AR模型的盲源分离方法[J].数据采集与处理,2011,26(2):162-166. 被引量:6
  • 5Hyvarenen A. Fast and robust fixed-point algorithms for independent component analysis [J]. 1EEE Transactions on Neural Networks, 1999, 10 (3) : 626-634.
  • 6LinYD, Hsu C ,Chen H Y, et al. An efficient ICA approach based on neural network framework for biomedical applications[C]//The 2010 Inter-National Joint Conference on Neural Networks(IJCNN). Bar- celona, Spain:[s. n. ], 2010:1-8.
  • 7Clark F S P, Petraglia M R, Diego B H. A new ini- tialization method for frequency domain blind source separation algorithms [J] IEEE Signal Processing Letters, 2011,18(6) : 343-346.
  • 8李虎雄,黄琛泽.抑制干扰的频域盲源分离后处理算法[J].计算机工程,2009,35(11):202-204. 被引量:3
  • 9Naqvi S M, Miao Y, Chambers J A. A multimodal approach to blind source separation of moving sources [J]. IEEE Journal of Selected Topics in Signal Pro- cessing, 2010,4(5) :895-910.
  • 10Leandro D P, Diego M, Masuzo Y. Indeterminacy free frequency domain blind separation of reverberant audio sources[J]. Speech and Language Processing, 2009, 17(2) 299-311.

二级参考文献22

  • 1高鹰,谢胜利.一种线性混合信号盲提取算法[J].电子与信息学报,2006,28(6):999-1003. 被引量:12
  • 2刘聪锋,赵国庆.K分布及其函数表的生成[J].航天电子对抗,2006,22(4):55-57. 被引量:1
  • 3范乐昊,邱晓晖,司海飞.基于独立分量分析的噪声消除技术[J].金陵科技学院学报,2006,22(4):45-48. 被引量:3
  • 4黄磊,刘郁林,徐舜.一种引入虚拟噪声分量的独立分量分析语音增强算法[J].重庆邮电大学学报(自然科学版),2007,19(2):181-184. 被引量:1
  • 5王振力,张雄伟,白志强.语音增强新方法的研究[J].南京邮电大学学报(自然科学版),2007,27(2):10-14. 被引量:8
  • 6Araki S, Makino S, Nishikawa T, et al. Fundamental Limitation of Frequency Domain Blind Separation for Convolutive of Speech[C]// Proc. of IEEE Int'l Conf. on Acoustics, Speech, Signal Processing. Salt Lake City, USA: [s. n.], 2001: 2737-2740.
  • 7Park K S, Park J S, Son K S, et al. Postprocessing with Wiener Filtering Technique for Reducing Residual Crosstalk in Blind Source Separation[J]. IEEE Signal Processing Letters, 2006, 13(12): 749-751.
  • 8Bingham E, Hyvarinen A. A Fast Fixed-point Algorithm for Independent Component Analysis of Complex Valued Signals[J]. Journal of Neural Systems, 2000, 10(I): 1-8.
  • 9Matsuoka K. Minimal Distortion Principle for Blind Source Separation[C]//Proceedings of the 41st SICE Annual Conference. Osaka, Japan: [s. n.], 2002: 2138-2143.
  • 10Wang Wenwu. A Novel Hybrid Approach to the Permutation Problem of Frequency Domain Blind Source Separation[C]// Proceedings of the 5th International Conference on Independent Component Analysis and Blind Signal Separation. Granada, Spain: [s. n.], 2004: 532-539.

共引文献11

同被引文献28

  • 1Shalvi O, Weinstein E. Super-exponential methods for blind equalization[J]. IEEE Trans Inform Theo- ry,1993, 39(2) :505-519.
  • 2Guo Y C, Zhao X Q. Coordinate transformation based super exponential iterative blind equalization al- gorithm [C]//2010 Second Pacific-Asia Conference on Circuits, Communications and System (PACCS). Beijing: Institute of Electrical and Electronics Engi- neers, 2010:125-128.
  • 3Ning Xiaoling, Liu Zhong, Liu Zhikun, et al. New super-exponential iteration blind equalization algo- rithm for underwater acoustic communications[C]// 2011 International Conference on Image Analysis and Signal Processing (IASP). Hubei:IEEE Press,2011:468-473.
  • 4Li Jinming, Lu Jing. A modified super-exponential algorithm for joint blind equalization and carrier re covery[C] // Electronics, Communications and Con trol (ICECC), 2011 International Conference on. Ningbo : IEEE Press, 2011 : 2437-2440.
  • 5Zhang Pu, Yi Jin, He Sailing. Inverse transforma- tion optics and reflection analysis for two-dimensional finite-embedded coordinate transformation[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2010,16(2) : 427-432.
  • 6Yang Rui, Tang Wenxuan, Yang Hao, et al. A co- ordinate transformation-based broadband flat lens via mierostrip array[J]. IEEE Antennas and Wireless Propagation Letters, 2011,10(4) : 99-102.
  • 7Kwon Do-Hoon, Emiroglu C D. Low-profile embed- ded design of endfire scanning arrays with coordinate transformations [J]. Journal of Applied Physics, 2010,107(3) : 034508.1-034508.8.
  • 8张浩,高勇.11/2维谱估计在直升机声信号特征提取中的应用[J].数据采集与处理,2008,23(4):476-480. 被引量:7
  • 9张朝柱,张健沛,孙晓东.基于自适应粒子群优化的盲源分离[J].系统工程与电子技术,2009,31(6):1275-1278. 被引量:19
  • 10郭业才,杨超.基于正交小波变换的超指数迭代联合盲均衡算法[J].数据采集与处理,2010,25(1):13-17. 被引量:4

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部