期刊文献+

基于B样条整体最小二乘的非线性多功能传感器信号重构方法 被引量:2

Signal Reconstruction of Nonlinear Multifunctional Sensor Based on B-Spline Total Least Squares Method
下载PDF
导出
摘要 提出一种基于B样条整体最小二乘(Total least squares,TLS)的非线性多功能传感器信号重构新方法。该方法利用B样条基函数直接构建描述多功能传感器传递函数反函数的张量积B样条曲面;采用TLS求解超定方程组以获得稳定的控制系数估计。以二输入二输出多功能传感器模型为实验对象,在两种非线性情况下对多功能传感器的输入信号进行了重构,重构相对误差分别为0.162%和1.043%,并与常用重构方法进行了对比分析。理论和实验表明,B样条TLS重构方法对非线性多功能传感器传递函数的反函数具有良好的逼近性能,在信号重构中表现出较好的有效性。 B-spline total least squares (TLS) is proposed for signal reconstruction of the nonlin- ear multifunctional sensor. In the method, the tensor product B-spline surface for describing the inverse function of the nonlinear multifunctional sensor system transfer function, is directly constructed based on the B-spline basis functions. The total least squares(TLS) algorithm is a- dopted to solve the overdetermined linear equations. One multifunctional sensor model with two inputs and two outputs is investigated. Input signals are reconstructed under two situa- tions with different nonlinearities. The reconstruction relative errors are 0. 162% and 1. 043%, respectively. Reconstruction results using the proposed method and other existing ones are compared and analyzed. Theoretical and experimental results demonstrate that the proposed B- spline TLS approaches well to the inverse function of the nonlinear multifunctional sensor sys- tem transfer function, and it can be used for signal reconstruction.
出处 《数据采集与处理》 CSCD 北大核心 2013年第3期294-300,共7页 Journal of Data Acquisition and Processing
基金 中央高校基本科研业务费专项资金(NS2012088)资助项目 国家自然科学基金(61201364)资助项目 南京航空航天大学引进人才科研启动基金(56YAH12007)资助项目
关键词 多功能传感器 信号重构 B样条 整体最小二乘 multifunctional sensor signal reconstruction B-spline total least squares(TLS)
  • 相关文献

参考文献14

二级参考文献58

共引文献71

同被引文献26

  • 1陈强,杨霄鹏,达新宇,欧阳超.一种快速收敛的航空信道载波恢复判决反馈盲均衡算法[J].中南大学学报(自然科学版),2013,44(9):3707-3712. 被引量:7
  • 2沈君姝,王健琪,翟振宇,荆西京.三维肿瘤运动和体表标记物运动的研究[J].中国医学物理学杂志,2006,23(1):1-4. 被引量:5
  • 3李宝生,王立英.呼吸运动分析在肺癌放射治疗中的应用研究现状[J].中华肿瘤防治杂志,2006,13(10):790-792. 被引量:6
  • 4李开宇.基于B-样条插值的图像边缘检测[J].南京航空航天大学学报,2007,39(2):198-203. 被引量:11
  • 5Pirozynsky M.100 years of lung cancer[J].Respire Med,2006,100:2073-2084.
  • 6Tsunashima Y,Sakae T,Shioyama Y,et al.Correlation between the respiratory waveform measured using a respiratory sensor and 3D tumor motion in gated radiotherapy[J].Int J Radiat Oncol Biol Phys,2004,60(3):951-958.
  • 7Lujan A E,Larsen E W,Baiter J M,et al.A method for incorporating organ motion due to breathing into 3D dose calculations[J].Med Phys,1999,26(5):715-720.
  • 8Li G,Citrin D,Camphausen K,et al.Advances in 4D medical imaging and 4D radiation therapy[J].Technology in Cancer Research & Treatment,2008,7(1):67-81.
  • 9Rueckert D,Sonoda L I,Hayes C,et al.Nonrigid registration using free-form deformations:Application to breast MR images[J].IEEE Trans Med Imaging,1999,18(8):712-721.
  • 10Justice R K,Stokely E M,Strobel J S,et al.Medical image segmentation using 3-D seeded region growing[C] //Proc SPIE Symposium on Medical Imaging.Newport Beach,USA:[s.n.] ,1997:900-910.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部