期刊文献+

重心插值Galerkin法求解梁弯曲变形问题 被引量:2

The solution of beam bending problem with barycentric rational interpolation Galerkin method
下载PDF
导出
摘要 本文运用广义函数建立非连续载荷作用下梁弯曲变形的控制方程,采用重心有理插值函数作为试函数,利用Delta函数的积分筛选性,建立重心有理插值Galerkin法求解梁弯曲变形问题的计算公式。数值算例表明,该方法原理简单,易于程序实现,数值计算精度高。 We employ a generalized function to construct the governing equation of beam bending under discrete loads.We also present the formula for solving beam bending problem by barycentric interpolation Galerkin method with barycentric rational interpolation as a test function and integral filtering of a Delta function.Numerical calculation examples demonstrate that the presented method has such positives as simplicity principle,easy programming and high accuracy.
出处 《山东科学》 CAS 2013年第3期60-65,共6页 Shandong Science
关键词 重心有理插值 广义函数 梁弯曲变形问题 GALERKIN法 barycentric rational interpolation generalized function beam bending problem Galerkin method
  • 相关文献

参考文献14

  • 1VIRDI K S. Finite difference method for nonliear analysis of structures [ J ]. Journal of Constructional Steel Research, 2006, 62 (11) : 1210 -1218.
  • 2RAJU I S, PHILLIPS D R, KRISHNAMURTHY T. A Meshless Method Using Radial Basis Functions for Beam Bending Problems [ EB/OL]. [ 2012 - 09 - 11 ] http ://ntrs. nasa. gov/archive/nasa/casi, ntrs. nasa. gov/20040191554_2004198262, pdf.
  • 3袁玉全,彭建设.复杂载荷下梁弯曲问题的微分求积法应用研究[J].四川理工学院学报(自然科学版),2006,19(5):81-84. 被引量:6
  • 4曾纪鹏.用奇异函数建立变参数连续梁挠度统一方程的新方法[J].四川建筑,2011,31(1):128-130. 被引量:3
  • 5DIRAC P A M. The principles of quantum mechanics[ M]. Oxford: Oxford University Press, 1930.
  • 6SCHWARZ L. TheolT of distributions[M]. Paris: Hermann, 1966.
  • 7YAVARI A, SARKANI S, MOYER E T. On applications of generalized functions to beam bending problems [ J ]. International Journal of Solids and Structures, 2000, 37 (40) : 5675 -5705.
  • 8YAVARI A, SARKANI S. On applications of generalized functions to the analysis of Euler-Bernoulli beam-columns with jump discontinuities [ J ]. International Journal of Mechanical Sciences, 2001,43 (6) : 1543 - 1562.
  • 9FALSONE G. The use of generalised functions in the discontinuous beam bending differential equations[J]. International Journal of Engineering Education, 2002, 18 (3) : 337 - 343.
  • 10BERRUT J P, MITTELMANN H D. Lebesgue constant minimizing linear rational interpolation of continuous functions over the interval[ J ]. Computational Mathematics and Applications, 1997, 33 (6) : 77 - 86.

二级参考文献15

共引文献20

同被引文献16

  • 1PU Jun-ping,ZHENG Jian-jun.Structural dynamic responses analysis applying differential quadrature method[J].Journal of Zhejiang University-Science A(Applied Physics & Engineering),2006,7(11):1831-1838. 被引量:5
  • 2DESHMUKH K C, WARBHE S D, KULKARNI V S. Quasi-static thermal deflection of a thin clamped circular plate due to heat generation [J]. Journal of Thermal Stresses, 2009, 32 (9) :877 - 886.
  • 3WANG Z Q, LI S C, Ping Y, et al. A highly accurate regular domain collocation method for solving potential problems in the irregular doubly connected domains[J]. Mathematical Problems in Engineering, 2014 (1) :1 -9.
  • 4MOHYUD-DIN S T, YILDIRIM A, HOSSEINI M M. An iterative algorithm for fifth-order boundary value problems [ J ]. World Applied Sciences Journal, 2010(5) :531 - 535.
  • 5VIRDI K S. Finite difference method for nonliear analysis of structures [J]. Journal of Constructional Steel Research, 2006, 62 (11) : 1210-1218.
  • 6KWON Y W, BANG H. The finite element method using MATLAB[M]. Boca Raton, FL, USA: CRC Press, Inc. 1996.
  • 7TANAKA M, MATSUMOTO T, OIDA S. A boundary element method applied to the elastostatic bending problem of beam-stiffened plates [J]. Engineering Analysis with Boundary Elements, 2000, 24 (10) : 751 - 758.
  • 8DONNING BM, LIU WK. Meshless methods for shear-deformable beams and plates [J]. Computer Methods in Applied Mechanics and Engineering, 1998, 152(1/2) : 47 - 71.
  • 9WANG X, BERT CW, STRIZ AG. Differential quadrature analysis of deflection, buckling, and free vibration of beams and rectangular plates [J]. Computers & Structures, 1993, 48 (3) : 473 - 479.
  • 10SHAO W, WU X. Fourier differential quadrature method for irregular thin plate bending problems on Winkler foundation [J]. Engineering Analysis with Boundary Elements, 2011, 35 (35) :389 - 394.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部