摘要
传统的水合物形成条件预测方法都存在各种缺点,而小波神经网络预测水合物形成条件的精度比较高,利于推广。针对水合物形成条件预测值之间相对差距较大,本文提出群体最大误差比率代表机制来改进小波神经网络的学习方式。实验结果表明,该算法有效可行,预测准确度高。
There are a variety of shortcomings in forecast methods of traditional hydrate formation conditions. Wavelet neural net-work prediction of hydrate formation conditions is of high precision and is conducive to the promotion. For the relative gap between the predictive values of hydrate formation conditions being larger, the groups maximum error ratio representation mechanism is presented to improve wavelet neural network learning style. The experimental results show that the algorithm is feasible and effective to predict with high accuracy.
出处
《计算机与现代化》
2013年第6期5-8,共4页
Computer and Modernization
基金
山东省自然科学基金资助项目(ZR2012EEM020)
关键词
预测
水合物形成条件
小波神经网络
学习方式
prediction
hydrate formation conditions
wavelet neural network
learning style