期刊文献+

基于CCA和PCA的说话人特征降维研究 被引量:1

Research on Dimension Reduction of Speaker's Characteristics Based on CCA and PCA
下载PDF
导出
摘要 为提高说话人识别的性能,提出将CCA与PCA联合用于说话人特征降维的方法:先用CCA融合基于声道模型的LPC特征和基于听觉模型的MFCC特征,提升这两类不同特征的相关性;然后用PCA进一步去除冗余特征,降低有效特征的维数。实验显示,这两种降维方法联合的降维效果与单一的CCA降维、PCA降维或手动降维的效果比有明显提高。 With the purpose of improving the performance of speaker recognition, a method of dimension reduction in speaker' s characteristics by jointing CCA and PCA is proposed. Firstly, LPC characteristics based on acoustic models and MFCC characteristics based on auditory models are blended by CCA method so as to enhance the eorrelativity between LPC and MFCC. After that the PCA method is used to eliminate redundant characteristics so as to reduce the effective characteristic dimensions of speech signal. Experiments show that the efficiency of dimension reduction of this novel method that joints CCA and PCA is significantly improved comparing to that of traditional methods while only using CCA dimension reduction, PCA dimension reduction or manual dimension reduction.
出处 《计算机与现代化》 2013年第6期16-19,共4页 Computer and Modernization
基金 江苏省自然科学基金资助项目(BK2009059) 解放军理工大学预研基金资助项目(2009TX08)
关键词 说话人识别 典型相关分析 主成分分析 高斯混合模型 特征降维 线性预测系数 美尔频率倒谱系数 speaker recognition canonical correlation analysis (CCA) principal components analysis (PCA) Gaussian mixture model (GMM) dimensional reduction linear prediction coefficient (LPC) Mel frequency cepstrum coefficient(MFCC)
  • 相关文献

参考文献10

  • 1Pullella D, Kuhne M, Togneri R. Robust speaker identifi- cation using combined feature selection and missing data recognition[ C ]// 2008 IEEE International Conference on Acoustics, Speech, and Signal Processing. Las Vegas, NV, USA: IEEE, 2008:4833-4836.
  • 2Avci Engin. A new optimum feature extraction and classifi- cation method for speaker recognition: GWPNN [ J ]. Ex- pert Systems with Applications, 2007,32(2) :485498.
  • 3赵力.语音信号处理[M].北京:机械工业出版社,2002.
  • 4刘幺和,宋庭新.语音识别与控制应用技术[M].北京:科学出版社,2008.
  • 5杨大利,徐明星,吴文虎.语音识别特征参数选择方法研究[J].计算机研究与发展,2003,40(7):963-969. 被引量:21
  • 6王金明,张雄伟.话者识别系统中语音特征参数的研究与仿真[J].系统仿真学报,2003,15(9):1276-1278. 被引量:17
  • 7孙权森,曾生根,王平安,夏德深.典型相关分析的理论及其在特征融合中的应用[J].计算机学报,2005,28(9):1524-1533. 被引量:89
  • 8杨俊英,杨洋,唐龙妹,杨海涛.典型相关分析[J].临床荟萃,2006,21(1):52-53. 被引量:8
  • 9Min-Seok Kim, Ha-Jin Yu, Keun-Chang Kwak, et al. Ro- bust text-independent speaker identification using hybrid PCA & LDA [ C ]// Mexican International Conference on Artificial Intelligence. Apizaco, Mexico: IEEE, 2006 : 1067-1074.
  • 10Liu C. Gabor-based kernel PCA with fractional power poly- nomial models for face recognition [ J ]. IEEE Trans. , Pat- tern Analysis and Machine Intelligence, 2004,26(5) :573- 581.

二级参考文献29

  • 1陈魁.实验设计与分析[M].北京:清华大学出版社,1996,8.94.
  • 2张尧庭.多元统计分析引论[M].北京:科学出版社,1999.35-46.
  • 3O Viikki, K Laurila. Cepstral domain segmental feature vector normalization for noise robust speech recognition. Speech Communication, 1998, 25(1): 133--147.
  • 4Yang Dali, Xu Mingxing, Wu Wenhu. A novel feature selection method in speech recognition. Int' 1 Conf on Chinese Computing,Singapore, 2001.
  • 5K Paliwal. Study of line spectrum pair frequencies for vowel recognition. Speech Communication, 1989, 8(1): 27--33.
  • 6Hermansky, Hykek, Morgan Nelson. RASTA processing of speech. IEEE Trans on Speech and Audio Processing, 1994, 2(4) : 578--589.
  • 7C Emmanouilidis, A Hunter. Multiobjective evolutionary setting for feature selection and a commonality-based crossover operator.In: Proc of the IEEE Conf on Evolutionary Computation.Piscataway: Institute of Electrical and Electronic Engineers Inc,2000. 309--316.
  • 8Sambur M R. Selection of Acoustic Features for Speaker Identification [C]. IEEE Trans On ASSP, 1975: 176-182.
  • 9Rabineer L R, Juang B H. Fundamentals of Speech Processing and Recognition[M]. Prentice-HalL 1993.
  • 10Junqua J C, Wakital H, Hermansky H. Evaluation and Optimization of perceptualyy-based ASR front-end[j]. IEEE Tran. ASSP-1, 1993, (3):39-48.

共引文献163

同被引文献11

  • 1Rasiwasia N, Costa Pereira J, Coviello E, et al.A new approach to cross-modal multimedia retrieval [C]// Proceedings of the International Conference on Multimedia. New York, USA: ACM,2010:251-260.[DOI=10.1145/1873951.1873987].
  • 2Zhu F, Shao L, Yu M Y. Cross-modality submodular dictionary learning for information retrieval[C]//Proceedings of the 23rd ACM International Conference on Information and Knowledge Management. New York, USA: ACM, 2014: 1479-1488.[DOI=10. 1145/2661829.2661926].
  • 3Olshausen B A, Field D J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images [J].Nature, 1996, 381(6583):607-609. [DOI: 10.1038/381607a0].
  • 4Zheng M, Bu J J, Chen C, et al. Graph regularized sparse coding for image representation[J]. IEEE Transactions on Image Processing, 2011, 20(5): 1327-1336.[DOI:10.1109/TIP.2010.2090535].
  • 5Wright J, Yang A Y, Ganesh A, et al. Robust face recognition via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227. [DOI: 10.1109/TPAMI.2008.79].
  • 6Long M S, Ding G G, Wang J M, et al. Transfer sparse coding for robust image representation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, New Jersey: IEEE, 2013: 407-414. [DOI: 10.1109/CVPR. 2013. 59].
  • 7Gao S H, Tsang I W, Chia L T, et al. Local features are not lonely-Laplacian sparse coding for image classification [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, New Jersey: IEEE, 2010: 3555-3561. [DOI: 10.1109/CVPR.2010.5539943].
  • 8Lee H, Battle A, Raina R, et al. Efficient sparse coding algorithms[C]//Advances in Neural Information Processing Systems 19. Cambridge, MA: MIT Press, 2006: 801-808.
  • 9Mairal J, Bach F, Ponce J, et al. Online dictionary learning for sparse coding[C]//Proceedings of the 26th Annual International Conference on Machine Learning. New York, USA: ACM, 2009: 689-696. [DOI=10.1145/1553374.1553463].
  • 10刘洋,李一波,姬晓飞,王杨扬.基于稀疏编码的动态纹理识别[J].中国图象图形学报,2014,19(8):1185-1193. 被引量:2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部