期刊文献+

基于前景分割的自阴影去除算法

Self Shadow Removal Algorithm Based on Foreground Segmentation
下载PDF
导出
摘要 从视频序列中识别运动物体是计算机视觉中一项基本且重要的任务,也是从静态背景中有效地分割运动物体的一项基本要求。在视频序列中,由于阴影强度的不同以及背景梯度的变化,分割出的前景物体一般都包含自阴影。而且,自阴影在自然界中一般都是模糊且无明显边界的。在视频序列中,为了消除此类阴影,本文提出一种基于平均统计差异推论的Z检验算法。这种统计模型能处理没有光源和表面方向数目限制的复杂、实时场景。实验结果表明,该算法能有效地从分割帧中检测出自阴影。 Removing identifying moving objects from a video sequence is a fundamental and critical task in many computer vision applications and a robust segmentation of motion objects from the static background is generally required. Segmented foreground objects generally include their self shadows as foreground objects since the shadow intensity differs and gradually changes from the background in a video sequence. Moreover, self shadows are vague in nature and have no clear boundaries. To eliminate such shadows from motion segmented video sequences, the paper proposes an algorithm based on inferential statistical difference in Mean (Z) method. This statistical model can deal scenes with complex and time varying illuminations without restrictions on the number of light sources and surface orientations. Results show that the algorithm can effectively and robustly detect associated self shadows from segmented frames.
出处 《计算机与现代化》 2013年第6期42-43,47,共3页 Computer and Modernization
关键词 前景分割 自阴影 推论统计 Z检验 foreground segmentation self shadow inferential statistics Mean (Z) test
  • 相关文献

参考文献14

  • 1韩鸿哲,王志良,刘冀伟,李彬,韩忠涛.基于自适应背景模型的实时人体检测[J].北京科技大学学报,2003,25(4):384-386. 被引量:15
  • 2林洪文,涂丹,李国辉.基于统计背景模型的运动目标检测方法[J].计算机工程,2003,29(16):97-99. 被引量:80
  • 3Kim J B, Kim H J. Efficient region-based motion segmen- tation for a video monitoring system [ J ]. Pattern Recogni- tion Letters, 2003,24 ( 1-3 ) : 113-128.
  • 4E1 Maadi A, Maldngue X. Outdoor infrared video surveil- lance: A novel dynamic technique for the subtraction of a changing background of IR images [ J]. Infrared Physics & Technology, 2007,49(3 ) :261-265.
  • 5Stauder J, Mech R, Ostermann J. Detection of moving east shadows for object segmentation[ J]. IEEE Transactions on Multimedia, 1999,1 ( 1 ) :65-76.
  • 6Elena Salvador, Andrea Cavallaro,Touradj Ebrahimi. Shadow identification and classification using invariant color models [C]// Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing. 2001:1545-1548.
  • 7Sun Yinlong. Self shadowing and local illumination of ran- domly rough surfaces [ C ]// Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pat-tern Recognition. 2004,1 : 158-165.
  • 8Wang J M, Chung Y C, Chang C L, et al. Shadow detec- tion and removal for traffic images [ C ]// Proceedings of the IEEE International Conference on Networking, Sensing & Control. 2004,1:649-654.
  • 9Takai T, Maki A, Matsuyama T. Self shadows and cast shad- ows in estimating illumination distribution [ C ]// the 4th Eu- ropean Conference on Visual Media Production. 2007:1-10.
  • 10Jiang C, Ward M O. Shadow identification [ C ]// Proceed- ings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 1992:606-612.

二级参考文献13

  • 1Wren C R, Azarbayejani A, Darrell T, et al. Real-time tracking of human body [J]. IEEE Trails Pattern Anal Maeh Intell, 1997, 19(7): 780.
  • 2Haritaoglu I, Harwood D, Davis L S. W4-A real time system for detection and tracking people and their parts[A]. Proc Third Face and Gesture Recognition Conference[C]. Japan, 1998. 222.
  • 3Toyama K, Krumm J, Brumitt B, et al. Wallflower: Principles and practice of background maintenance [A]. Proc IEEE Int ConfComputer Vision, Vol 1 [C]. Greece, 1999.255.
  • 4Grimson W E L, Stauffer C. Adaptive background mixture models for real-time tracking [A]. Proc IEEE Conference Computer Vision and Pattern Recognition, Vol 1 [C].USA, 1999.22.
  • 5Sonka Milan, Hlavac Vaclav, Boyle Roger. Image Processing, Analysis and Machine Vision [M]. PWS, 1999.
  • 6Collins R, Lipton A,Kanade T,et al. A System for Video Surveillance and Monitoring.Tech. Report CM U-RI-TR-00-12,Robotics Institute,Carnegie Mellon University,2000-05.
  • 7Koller D, Daniilidis K,Nagel H.Model-bascd Object Tracking in Monocular Image Sequences of Road traffic Scenes.International Journal of Computer Vision, 1993,10(3).
  • 8Wren C R,Azarbayejani A,Darrell T.Plinder:Real_time Tracking of the Human Body.IEEE Transactions on Pattern Analysis and Machine Intelligence, 1977-07,7.
  • 9Haritaoglu I,Davis L S,Harwood D.W4 Who? When? Where? What? A Rreal Time System for Detecing and Tracking People.In FGR98,1998.
  • 10Mclvor M.Background Subtraction Techniques.IVCNZ00, Hamilton,New Zealand, 2000-11.

共引文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部