期刊文献+

具有HollingⅡ功能反应函数捕食系统的Hopf分支

Hopf Bifurcation of The Predator-Prey System with Holling's TypeⅡ Functional Response
下载PDF
导出
摘要 主要应用微分方程定性理论与分支方法探讨了一类具有HollingⅡ功能函数捕食系统的平衡点与Hopf分支。首先通过相关定性理论对系统奇点性态进行了分析讨论,然后利用Hopf分支理论给出了系统极限环的存在性、唯一性及稳定性的条件。 In this paper, the Hopf Ⅱ bifurcations of the predator-prey system with Holling' s Type 11 functional response are investigated by using the qualitative theory of ordinary differential equations (ODEs) and the method of bifurcations. First, the behavior of equilibrium points is discussed by means of the qualitative theory. And then the existence, the uniqueness and the stability of the limit cycles are presented by Hopf bifurcation theory.
作者 石明奎
机构地区 通渭县第三中学
出处 《广东石油化工学院学报》 2013年第3期75-78,共4页 Journal of Guangdong University of Petrochemical Technology
关键词 捕食系统 平衡点 极限环 HOPF分支 simultaneous equation models variable bandwidth estimation two stage least squares
  • 相关文献

参考文献4

  • 1Xiao D, Ruan S. Global analysis in a predator- prey system with nonmonotonig functional response[J]. SIAM J . Appl .Mat h. , 2001 ,61 (4) : 1445- 1472.
  • 2赵延忠.一类捕食者-食饵扩散模型的稳定性分析[J].数学教学与研究,2008(2):55-56.
  • 3胡萍,伏升茂.具有阶段结构和空间扩散的竞争模型解的整体性态[J].西北师范大学学报(自然科学版),2008,44(1):1-5. 被引量:2
  • 4Kuznetsov Y A. Elements of Applied Bifurcation Theory[M]. New York :Appl. Math. sci. 112 , Springer - Verlag:91 - 100.

二级参考文献11

  • 1SONG Xin-yu,CHEN Lan-sun.Optimal haresting and stability for a two-species competitive system with stage structure[J].Math Boisci,2001,170:173-186.
  • 2LIU Sheng-qiang,CHEN Lan-sun,LUO Gui-lie.Extinction and permanence in competitive stage structured system with time-delays[J].Nonlinear Anal,2002,51:1347-1361.
  • 3XU Rui,CHAPLAIN M A J,DAVIDSON F A.Modelling and analysis of a competitive model with stage structure[J].Mathematical and Computer Modeling,2005,41:159-175.
  • 4AIELLO W G,FREEDMAN H I.A time-delay model of single-species growth with stage structure[J].Math Boisci,1990,101:139-153.
  • 5AIELLO W G,FREEDMAN H I,WU Jian-hong.Analysis of a model representing stage-structured population growth with state-dependent time delay[J].SIAM J Appl Math,1992,52:855-869.
  • 6ZHANG Xin-an,CHEN Lan-sun,NEAMANN A U.The stage-structured predator-prey model and optimal harvesting polite[J].Math Boisci,2000,168:201-210.
  • 7LIN Zhi-gui.Time delayed parabolic system in a two-species competitive model with stage structure[J].J Math Anal Appl,2006,315:1347-1361.
  • 8PAO C V.Nonlinear Parabolic and Elliptic Equations[M].New York:Prenum,1992.
  • 9PANG P,WANG Ming-xin.Strategy and stationary pattern in a three-species predator-prey model[J].J Diff Eqs,2004,200:245-273.
  • 10HENRY D.Geometric Theory of Semilinear Parabolic Equations[M].New York:Springer-Verlag,1993.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部