期刊文献+

高斯光谱估计结合形状特征的遥感影像分割方法 被引量:2

Segmentation Method of Remote Sensing Images Based on Gaussian Estimates and Shape Characteristics
下载PDF
导出
摘要 针对传统区域合并算法仅利用光谱均值的不足,提出了一种新的结合光谱与形状特性的遥感影像分割算法。该算法首先对输入遥感影像进行分水岭分割;然后利用一种新的结合光谱与形状特性的区域相似性准则,采用区域邻接图的算法对初始分割区域进行合并,获取最终分割结果。实验结果表明,该算法能有效克服传统算法仅利用光谱均值的不足,有效解决遥感影像中相同光谱,不同纹理结构区域的分割问题;同时,本文算法还对纹理规则区域的分割效果有较好的改进。 With the insufficiency of only using the average spectrum in traditional region merging algorithm, a new remote sensing im- age segmentation algorithm which combines the characteristics of spectral and shape is proposed. Firstly, the algorithm segments the entering remote sensing image, and then uses a new regional similarity criteria which combines the characteristics of spectral and shape and region adjacency graph algorithm to merge the initial segmentation area. Lastly the final segmentation results are obtained. Experi- mental results show that the algorithm can effectively overcome the insufficiency of only using the average spectrum in the traditional al- gorithm and effectively solve the segmentation problem of remote sensing image in the same spectral but different texture regions. At the same time, the segmentation results of the rule texture area have been improved.
出处 《测绘与空间地理信息》 2013年第6期138-141,共4页 Geomatics & Spatial Information Technology
关键词 标记分水岭 区域合并 遥感影像 区域邻接图 高斯估计 watershed mark region merging remote sensing images region adjacency graph gaussian estimates
  • 相关文献

参考文献10

二级参考文献67

共引文献226

同被引文献23

  • 1陈忠,赵忠明.基于区域生长的多尺度遥感图像分割算法[J].计算机工程与应用,2005,41(35):7-9. 被引量:26
  • 2薄华,马缚龙,焦李成.图像纹理的灰度共生矩阵计算问题的分析[J].电子学报,2006,34(1):155-158. 被引量:203
  • 3陈忠,赵忠明,宫鹏.一种快速高分辨率遥感影像分割算法[J].计算机应用研究,2006,23(10):154-155. 被引量:2
  • 4BAATZ M, SC'HAAPP' A. Multiresolution Segmenta-tion: an Optimization Approach for High QualityMulti-scale Image Segmentation [ C ]//AngewandteGeographische Informal ions-verarbeitung XII. StroblJ .Blaschke T. Clriesebner Cj( Kds). Wichmann, Heidel-berg . Germany,2000.
  • 5SCHIEWE J , TUFKT L, KHLKRS M. Potential andProblems of Multi-scale Segmentation Methods in Re-mote Sensing[J], (;eoBIT/GIS,2001,6(1) :34-39.
  • 6BLASCHKE T.BURNETT C,PEKKAR1NEN A. 1mage Segmentation Methods for Object-based Analysisand Classification [ C ] / / Remote sensing Image Analy-sis :Including ihe Spatial Domain. Springer Nether-.
  • 7BLASCHKE T’LANG S,LORU P E,et al. Object-ori-ented Image Processing in an Integrated GIS/RemoteSensing Environment and Perspectives for Environ-mental Applications[J]. Environmental Information forPlanning,Politics and the Public,2000(2) :555-570.
  • 8SCHIEWE J. Segmentation of High-resolution Re-motely Sensed Data-concepts, Applications and Prob-lems [J]. International Archives of PhotogrammetryRemote Sensing And Spatial Information Sciences,2002,34(4):380-385.
  • 9NEUBERT M. MEINEL G. Evaluation of Segmenta-tion Programs for High Resolution Remote SensingApplications [ C ]//International ISPRS Workshop:High Resolution Mapping from Space,2003.
  • 10GONZALEZ R C, WOODS R E. Digital Image Pro-cessing[M]. Upper Saddle River,NJ, USA: PrenticeHall,2002;394-402.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部