期刊文献+

一类抛物型方程的粘性解 被引量:1

Viscosity solutions for a class of parabolic equations
下载PDF
导出
摘要 讨论一类退化、奇异抛物型方程的初边值问题 .通过构造上下解 ,利用粘性解的比较原理和 Per-ron方法 。 In this paper the initial and Dirichlet problem for a class of degenerate and singular nonlinear parabolic equations were investigated. This problem was derived from the evolution of a parametric surface by its mean curvature subject to fixed boundary conditions. The existence and uniqueness of viscosity solutions by constructing subsolutions and supersolutions were proved.
作者 边保军
出处 《浙江大学学报(理学版)》 CAS CSCD 2000年第1期32-34,共3页 Journal of Zhejiang University(Science Edition)
基金 国家自然科学基金!(196 310 5 0 )资助项目
关键词 抛物型方程 粘性解 初边值问题 parabolic equations viscosity solutions Perrons method
  • 相关文献

参考文献1

  • 1Chen Y G,J Differential Geom,1991年,33卷,749页

同被引文献6

  • 1王宁,王培光,孙晓玲.一类具分布式偏差变元的双曲型向量泛函微分方程解的H-振动性[J].应用泛函分析学报,2007,9(1):63-69. 被引量:8
  • 2MINCHEV E,YOSHIDA N. Oscillation of solutions of vector differential equations of parabolic type with functional arguments[J]. J Comput Appl Math, 2003, 151(1):107-117.
  • 3LI W N, HAN M A, MENG F W. H-oscillation of solutions of certain vector hyperbolic differential equations with deviating arguments[J]. Appl Math Comput,2004,158(3):637-653
  • 4LADDE G S, LAKSHMIKANTHAM V, ZHANG B G. Oscillation Theory of Differential Equations with Deviating Arguments[M]. New York: Basel Marcel Dekker Inc, 1987.
  • 5DOMSLAK Ju I. On the oscillation of solutions of vector differential equations[J]. Soviet Math Dokl, 1970 11:839-841.
  • 6COURANT R, HILBERT D. Methods of Mathematical Physics:Vol.Ⅰ[M]. New York: Interscience, 1996.

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部