期刊文献+

树木位置空间模式建模与预测(英文) 被引量:1

Modeling and Predicting Spatial Patterns of Trees
下载PDF
导出
摘要 传统的林分生长与收获模型不能为林分和生态系统管理提供准确的空间信息。采用3种配对势函数的Gibbs点过程模型对美国东北部50块云冷杉样地里树木的空间分布模式进行模拟。该Gibbs模型能够较好地模拟这50块样地中的82%~84%,但其对完全随机分布和规则分布的样地模拟比对聚集分布的样地模拟效果要好。使用常用的林分变量如林分密度、公顷断面积、林分平均胸径、平均树高、平均冠幅和冠长建立经验回归模型对Gibbs模型的2个参数进行预测。结果表明这些回归模型对81%的样地可以得到满意的模拟效果,其中,100%的完全随机分布样地、71%的规则分布样地和56%的聚集分布样地模拟效果较好。选择3块样地对树木的模拟空间位置和实际观测位置的相似性进行对比和说明。 Traditional forest growth and yield models have been criticized for their inability to provide precise spatial information for forest and ecosystem management. In this study the spatial patterns of trees within 50 spruce-fir plots in the Northeast, USA were modeled by a Gibbs point process model with three pair potential functions. In general, 82%-84% of these 50 plots were modeled well by the Gibbs model. However, the complete spatial random (CSR) and regular spatial patterns were modeled better than the clustered plots. Further, empirical regression models were developed to predict the two parameters of the Gibbs model using the available stand variables as predictors such as stand density, basal area, mean tree diameter, mean tree height, mean crown length, and mean crown width. The simulation results showed that 81% of the 50 plots were satisfactorily predicted by the empirical regression models. Among them, 100% of the CSR plots, 71% of the regular plots, and 56% of the clustered plots were predicted well by the empirical regression models. Three example plots were selected to illustrate the similarity between simulated tree locations and observed ones.
出处 《林业科学》 EI CAS CSCD 北大核心 2013年第5期110-120,共11页 Scientia Silvae Sinicae
基金 Supported by the Scientific Research Funds for Forestry Public Welfare of China(201004026) Ministry of Education "Overseas Experts and Scholars" project
关键词 空间点模式 空间点过程 Gibbs模型 Ripley'sK-function 马尔可夫链MonteCarlo(MCMC) spatial point pattern spatial point process Gibbs model Ripley's K-function Markov Chain Monte Carlo (MCMC) Metropolis algorithm Takacs-Fiksel method
  • 相关文献

参考文献32

  • 1Gill P E, Murray W, Wright M. 1981. Practical optimization. Academic Press, New York.
  • 2Metropolis N, Rosenbluth A W, Teller M N, et al. 1953. Equation of state calculations by fast computing machines. Journal of Chemical Physics, 21 (6) : 1087 - 1092.
  • 3Ripley B D. 1977. Modeling spatial patterns (with discussions). Journal of Royal Statistical Society Series B, 39(2) : 172 -192.
  • 4Diggle P J. 1983. Statistical analysis of spatial point patterns. Academic Press, New York, 148.
  • 5Wood W W. 1968. Monte Carlo studies of simple liquid models// Temperly H N, Rowlinson J S, Rushbrooke G S. Physies of Simple Liquids. Amsterdam,North-Holland,115-230.
  • 6Doveiak M, Frelich L E, Reich P B. 2001. Discordance in spatial patterns of white pine (Pinus strobus)size-classes in a patchy near- boreal forest. Journal of Ecology, 89 (2) : 280 - 291.
  • 7Jensen J L, Moiler J. 1991. Pseudolikelihood for exponential family models of spatial point processes. Annals of Applied Probability, 1 (3) : 445 -461.
  • 8Haase P. 1995. Spatial pattern analysis in ecology based on Ripley's K- function: Introduction and methods of edge correction. Journal of Vegetation Science, 6(4) : 575 - 582.
  • 9Kleinschmidt S, Baskerville G L. 1980. Foliage weight distribution in the upper crown of balsam fir. USDA Forest Service Research Paper NE-455, 8.
  • 10Matern B. 1971. Doubly stochastic Poisson processes in the plane//Patil G P, Pielou E C, Waters W E. Statistical ecology I. Pennsylvania State University Press, College Town, PA, 195 - 213.

同被引文献13

  • 1DEUSSEN O,HANRAHAN P,LINTERMANN B,et al.Realistic modeling and rendering of plant ecosystems[C].Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques:ACM,1998:275-286.
  • 2LANE B,PRUSINKIEWICZ P.Generating spatial distributions for multilevel models of plant communities[C].Graphics Interface,2002:69-80.
  • 3ROSS S M.Introduction to Probability Models[M].New York:Academic Press,1997.
  • 4ESTER M,KRIEGEL H P,SANDER J,et al.A density-based algorithm for discovering clusters in large spatial databases with noise[C].The 2nd International Conference on Knowledge Discovery and Data Mining(KDD),Portland,USA:AAAI Press,1996.
  • 5European Commission.Radiation transfer model intercomparison(RAMI-IV)[EB/OL].(2012-04-04)[2014-09-22].http://rami-benchmark.jrc.ec.europa.eu/HTML/RAMI-IV/RAMI-IV.php.
  • 6DISNEY M,LEWIS P,SAICH P.3D modelling of forest canopy structure for remote sensing simulations in the optical and microwave domains[J].Remote Sensing of Environment,2006,100(1):114-132.
  • 7穆斌,潘懋,邓剑.基于投影体积与八叉树的三维网格模型体素化方法[J].地理与地理信息科学,2010,26(4):27-31. 被引量:12
  • 8朱磊,张怀清,林辉,蒋娴.Study on Stand Structure Visualization Based on GDI~+[J].Agricultural Science & Technology,2011,12(1):144-148. 被引量:3
  • 9甘龙飞,邹杰,唐丽玉,陈崇成,黄洪宇.高逼真度虚拟森林环境的半球成像方法模拟分析[J].地球信息科学学报,2013,15(3):345-355. 被引量:3
  • 10李永亮,鞠洪波,张怀清,蒋娴,刘海.基于林分特征的林木个体信息估算可视化模拟技术[J].林业科学,2013,49(7):99-105. 被引量:5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部