摘要
应用神经网络对非线性系统进行拟合,将训练好的神经网络作为非线性系统模型,并用遗传算法寻找非线性系统模型的最优解。通过多次重复仿真实验表明,提出的非线性系统寻优方法有效,均能以较快的收敛速度找到近似最优解,说明用RBF神经网络和遗传算法寻求非线性系统最优解的方法是有效的。
The paper fits nonlinear system by the neural networks, which takes the trained neural networks as nonlinear system model, and finds the optimal solution for nonlinear system model. The simulation results show that the optimization method of nonlinear systems can be of faster convergence rate to find the approximate optimal solution, which indicates that it is effective to find the optimal solution of nonlinear systems with the RBF neural network and genetic algorithm.
出处
《江西教育学院学报》
2013年第3期20-23,共4页
Journal of Jiangxi Institute of Education
基金
江西教育学院科研项目"神经网络遗传算法及其在寻优中的应用"
编号:10KJ03
关键词
遗传算法
人工神经网络
非线性系统
最优解
genetic algorithm
artificial neural network
nonlinear systems
optimal solution