摘要
讨论带有延滞项的奇异三点边值问题:u″(t)+f(t,u(t-τ))=0,t∈(0,1)\τu(t)=η(t),t∈u(1)=βu(α)(1)正解的存在性,其中f变号且可能在t=0,t=1,u=0处奇异,文章的最后给出了这个定理的具体应用.
In this paper,we consider the existence of positive solutions for the following boundary value problem with changing sign nolinearity:u ″(t) +f(t,u(t -τ)) =0,t∈(0,1) /τu(t) =η(t),t∈[ -τ,0] u(1) =βu(α) Where f is sigh -changing nonlinearity and it may be singular at t =0,t =1,u =0.In the end of the paper we give an example of the theorem.
出处
《商丘师范学院学报》
CAS
2013年第6期5-14,共10页
Journal of Shangqiu Normal University
基金
山东省自然科学基金资助项目(ZR2012AQ024)
山东省自然科学基金资助项目(ZR2010AM005)
关键词
三点边值问题
正解
不动点定理
延滞
奇异
锥
three point boundary value problem
positive solution
fixed point theorem
delay
singular
cone.