期刊文献+

(2+1)维非线性薛定谔方程的线畸形波及其传播特性

Line rogue wave solution of (2+1) dimensional nonlinear Schrdinger equation and its propagation characteristic
下载PDF
导出
摘要 采用一个通用的理论,即用相似变换的方法,研究构建了(2+1)维非线性薛定谔方程的精确畸形波解,并进一步讨论了一阶、二阶光学畸形波的传输特性,我们提出的线畸形波概念在理论和应用方面都具有启迪价值. We propose a unified theory, that is similarity transformation, to construct exact optical rogue wave solutions of (2 + 1 ) dimensional nonlinear SchriSdinger equation. Moreover, we investigate propagation dynamics of the first - order and second - order optical rogue wave in the optical fiber amplifier. Finally, we introduce the concept of linear rouge wave which will give edification in theory and practical application.
出处 《商丘师范学院学报》 CAS 2013年第6期34-38,共5页 Journal of Shangqiu Normal University
基金 国家自然科学基金资助项目(No.11072219)
关键词 (2+1)维 非线性薛定谔方程 相似变换 线畸形波 (2 + 1 ) - dimensions similarity transformation nonlinear Schrodinger equation line rogue wave
  • 相关文献

参考文献22

  • 1Osborne Z R. Nonlinear Ocean Waves[ M]. Academic Press, New York,2009.
  • 2Kharif C, Pelinovsky E, Slunyaev A. Rogue Waves in the Ocean, Observation, Theories and Modeling [ M ]. Springer, New York, 2009.
  • 3Muller P, Garrett C, Osborne A. Rogue Waves: The Fourteenth 'Aha Huliko'a Hawaiian Winter Workshop[ J]. Oceanography, 2005, 18:66.
  • 4陶爱峰,胡国栋.灾害性异常浪特性及研究方法综述[J].自然灾害学报,2008,17(1):174-179. 被引量:9
  • 5Akhmediev N, Ankiewicz A, Taki M. Waves That Appear from Nowhere and Disappear without a Trace [ J ]. Phys. Lett. A. , 2009, 373:675 - 678.
  • 6Ankiewiez A, Devine N, Akhmediev N. Are rogue waves robust against perturbations[J]. Phys. Lett. A. ,2009, 373 3997 - 4000.
  • 7李俊,陈刚,杨建民.深水畸形波的实验室物理模拟[J].中国海洋平台,2009,24(3):22-25. 被引量:7
  • 8谢涛,南撑峰,旷海兰,邹光辉,陈伟.反常波海面参数计算方法及其色散关系[J].物理学报,2009,58(6):4011-4019. 被引量:1
  • 9Dalfovo F, Giorgini S, Pitaevskii L P, Stringari S. Theory of Bose - Einstein condensation in trapped gases [ J ]. Rev. Mod. Phys. ,1999, 71:463 - 512.
  • 10Bludov Y V,Konotop V V,Akhmedicv N. Matter rogue wavesJ]. Phys. Rev. A. ,2009, 80:033610.

二级参考文献73

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部