摘要
针对柱温度、进口压力和出口压力均有可能变化的条件 ,系统推导了描述气相色谱组分柱内运动过程的微分方程及有关变量 ,给出了方程成立的6个基本假设 ,并得出了模型因子的定义。用四阶Ronge -Kutta法实现了微分方程的可控精度数值计算。利用归一化和参考态方法简化了模拟方法 ,并用于典型色谱程序变化过程的模拟。理论上本文介绍的模拟方法适用于各种可能的温度、柱前压、柱后压及流量条件程序变化。对本方法的意义和应用前景进行了讨论。
The differential equation and the related variables describing the motion process of a solute are systematically derived aimed at possible condition changes in column temperature, inlet and outlet pressure in gas chromatography. Six basic hypotheses are proposed for the establishment of the equation and a model factor is defined. Numerical calculation of the equation with controllable precision is carried out by using the four-level algorithm of Ronge-Kutta. The procedure is simplified by taking the advantage of normalization and reference state, and typical chromatographic programs are simulated. Theoretically, the procedure here introduced is applicable for any possible programmed changes in temperature, inlet pressure, outlet pressure and flow rate. The influence and possible applications of the procedure are discussed.
出处
《河北大学学报(自然科学版)》
CAS
2000年第1期38-43,共6页
Journal of Hebei University(Natural Science Edition)
基金
河北大学启动基金资助项目
关键词
气相色谱
保留时间
通用模拟方法
gas chromatography
retention time
general simulation procedure