期刊文献+

关于Van Der Corput不等式的完善 被引量:3

The Improvement on Van Der Corput’s Inequality
下载PDF
导出
摘要 运用数值计算和分析方法将Van Der Corput不等式的改进式做了进一步完善,建立了Van Der Corput不等式更强的改进式,它形式简洁且强于现有的结论. Further improvements on enhanced Van Der Co computational and analytic techniques. The inequality obtained in than that proposed in the previous articles. rput's inequality are given by using this paper is stronger and more concise
出处 《广东第二师范学院学报》 2013年第3期25-31,共7页 Journal of Guangdong University of Education
基金 2012年福建省大学生创新创业训练计划资助项目
关键词 VAN Der Corput不等式 Franel不等式 欧拉常数 改进 Van Der Corputrs inequality Franelrs inequality EulerPs constant~ improvement.
  • 相关文献

参考文献4

二级参考文献11

共引文献17

同被引文献18

  • 1马昌威.关于Van der Corput不等式的进一步改进[J].西华师范大学学报(自然科学版),2004,25(3):325-327. 被引量:9
  • 2YANG Bi-cheng.On an Extension and a Refinement of Van der Corput's Inequality[J].Chinese Quarterly Journal of Mathematics,2007,22(1):94-98. 被引量:10
  • 3Halmos P R. The heart of mathematics [ J]. American Mathematical Monthly, 1980,87(7) : 519-524.
  • 4Wu S.-H. A further generalization of Acz6l"s inequality and Popoviciu's inequality [ J] , Mathematical Inequalities &Applications, 2007,10(3) : 565-573.
  • 5Wu S.-H. On the weighted generalization of the Hermite-Hadamard inequality and its applications[ J] , Rocky MountainJournal of Mathematics, 2009, 39(5) : 1741-1749.
  • 6Wu S. -H, Debnath L. A generalization of L' Hospital - type rules for monotonicity and its application [ J ]. AppliedMathematics Letters, 2009,22(2) : 284-290.
  • 7Wu S.-H, Debnath L. Inequalities for convex sequences and their applications [ J ] , Computers & Mathematics withApplications, 2007,54(4) ; 525-534.
  • 8Wei F. - H, Wu S. - H. Several proofs and generalizations of a fractional inequality with constraints [ J ]. OctogonMathematical Magazine, 2009, 17(2): 687-696.
  • 9许谦,张小明.对Van Der Corput不等式的加强[J].纯粹数学与应用数学,2010,26(6):895-904. 被引量:9
  • 10张帆,钱伟茂.Van Der Corput不等式的推广[J].湖州师范学院学报,2012,34(1):10-15. 被引量:4

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部