期刊文献+

抛物旅行时插值最短路径射线追踪 被引量:17

Shortest path ray tracing based on parabolic traveltime interpolation
下载PDF
导出
摘要 以最短路径射线追踪为基础,受动态网络最短路径射线追踪的启发,本文推导了抛物旅行时插值射线追踪公式,提出了基于抛物旅行时插值的最短路径射线追踪方法。其关键在于对某一计算节点不但利用Dijkstra算法计算旅行时,而且利用已知旅行时的节点形成的插值段进行抛物旅行时插值(PTI),并将两部分得到的最小旅行时作为该计算节点的最终时间,射线路径追踪利用抛物旅行时插值从接收点到炮点反向追踪。模型试算证明了该方法的正确性、有效性和适用性。 Under the foundation of shortest path ray tracing,inspired by the dynamic network shortest path ray tracing,we derive the formulation of parabolic traveltime interpolation and propose the shortest path ray tracing based on parabolic traveltime interpolation.The kernel of the method is that we calculate time of one node not only using Dijstra algorithm but also by parabolic traveltime interpolation at the interpolation segment formed by the nodes with computed time.Then we take the minimum traveltime as the final time of the node.After that,the backward ray path tracing from the receiver point to the shot point is performed by parabolic traveltime interpolating.Model data tests prove the accuracy,validity and applicability of the method.
出处 《石油地球物理勘探》 EI CSCD 北大核心 2013年第3期403-409,506+328,共7页 Oil Geophysical Prospecting
基金 国家自然科学基金(41204086) 国家"863"课题(2010AA060301) 国家科技重大专项课题(2011ZX05006-002)资助
关键词 射线追踪 动态网络 抛物旅行时插值 初至波 ray tracing,dynamic network,parabolic traveltime interpolation,first break
  • 相关文献

参考文献8

  • 1Nakanishi I, Yamaguchi K. A numerical experiment on nonlinear image reconstruction from first-arrival times for two-dimensional island arc structure. J Phys Earth, 1986, 34(2): 195- 201.
  • 2Dijkstra E W. A note on two problems in connection with graphs. Numerische Mathematik, 1959, 1(1) :269-271.
  • 3Moser T J. Shortest path calculation of seismic rays. Geophysics, 1991 ,56(1) :59-67.
  • 4Robert Fischer and Jonathan M Lees. Shortest path ray tracing with sparse graphs. Geophysics, 1993, 58(7) :987-996.
  • 5张建中,陈世军,余大祥.最短路径射线追踪方法及其改进[J].地球物理学进展,2003,18(1):146-150. 被引量:88
  • 6张荣,张迁,刘政凯.一种新的地磁图纸数字化软件:GDDS[J].地球物理学进展,2004,19(1):183-185. 被引量:38
  • 7Zhang Meigen and Li Xiaofan. Ray tracing with the improved shortest path method. SEG Technical Program Expanded Abstracts, 2005,24: 1795- 1797.
  • 8Harm J A et al. Hybrid shortest path and ray bending method for traveltime and raypath calculations. Geophysics, 2001, 66(2): 648-653.

二级参考文献13

  • 1[5]S Mallat. Multifrequency channel decomposition of images and wavelet models[J]. IEEE Trans. on ICASSP [J ]. 1989,37(12) :2091~2110.
  • 2Dijkstra E W. A note on two problems in connection with graphs[J].Numer. Math., 1959, 1:269-271.
  • 3Nakanishi I, Yamaguchi K. A numerical experiment on nonlinear image reconstruction from first-arrival times for two-dimensional island arc structure[J]. J. Phys. Earth, 1986, 34:195-201.
  • 4Moser T J. Shortest path calculation of seismic rays[J]. Geophysics,1991, 56(1): 59-67.
  • 5Klimes L, Kvasnicha M. 3-D network ray tnlcing[J], Geophys. J.Int., 1994, 116:726-738.
  • 6Zhang J,Toksoz M N. Nonlinear refraction traveltime tomography[J].Geophysics, 1998, 63:1726- 1737.
  • 7Moser T J, Van Eck T, Nolet G. hypocenter determination in strongly heterogeneous earth models using the shortest path method[J]. J. Geophys. Res., 1992, 97:6563 -6572.
  • 8Fischer R,Lees J M. Shortest path my tracing with sparse graphs[J].Geophysics, 1993, 58:987-996.
  • 9Van Avendonk H J A, Harding A J, Orcutt J A, Holbrook W S. Hybrid shortest path and ray bending method for traveltime and raypathc calcuations[J]. Geophysics, 1982,66(2) :648 - 653.
  • 10Johnson D B. Efficient algorithms for shortest paths in sparse networks[J]. Journal of the ACM, 1977, 24:1-13.

共引文献107

同被引文献333

引证文献17

二级引证文献91

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部