摘要
目的探讨小干扰RNA(siRNA)抑制核因子-κB(NF—KB)对^131I致DTC细胞凋亡能否产生协同作用。方法2×10^4 MBq/L^131I作用人甲状腺乳头状癌细胞株KTC-124h后做DNA结合实验,48h后做细胞存活分析。Westernblot鉴定^131I作用6h后细胞NF—KBp65的变化,24h后凋亡抑制因子[X-染色体相关凋亡抑制蛋白(XIAP)、细胞凋亡抑制因子1(eIAPl)、B细胞淋巴瘤因子大亚基(Bel—xL)]、凋亡关键因子[半胱氨酸蛋白酶(caspase3)和多聚腺苷二磷酸核糖聚合酶(PARP)]的变化。p65和凋亡抑制因子的Westernblot检测分4组:未转染(A)组、未转染+^131I(B)组、转染对照siRNA+^131I(c)组和转染p65siRNA+^131I(D)组;其余实验分为6组:未转染(1)组、转染对照siRNA(2)组、转染p65siRNA(3)组、未转染+^131I(4)组、转染对照siRNA+^131I(5)组和转染p65siRNA+^131I(6)组。多组间均数比较采用单因素方差分析,均数两两比较采用q检验。结果1至6组DNA结合率分别为(100.00±11.65)%、(96.00±17.98)%、(9.28-I-5.01)%、(322.72±50.81)%、(311.36±44.81)%和(36.96±15.66)%,差异有统计学意义(F=137.74,P〈0.01);^131I作用后KTC-1细胞NF—KB活性均增强(q4:1自=10.90,q5:2g=11.38,均P〈0.01);p65siRNA可抑制NF—KB功能(q㈦目=18.25,q46目=13.71,均P〈0.01)。6组细胞存活率分别为(100.00±11.65)%、(96.32±9.44)%、(70.88±7.41)%、(64.16±9.50)%、(62.24±9.37)%和(28.64±6.74)%(F=52.76,P〈0.01);3、4和6组比,q=10.76和7.79,均P〈0.Ol。Westernblot结果显示A、B、C和D组p65相对表达水平分别为(56.60±7.37)%、(111.07±13.31)%、(113.16±15.04)%和(12.46±2.74)%,差异有统计学意义(F=60.17,P〈0.01);^131I作用后p65浓度增高(qB:A组=6.20,qC:A组=5.85,均P〈0.01);p65siRNA可抑制其浓度增高(q帅自=12.57,qC:D组=11.41,均P〈0.01)。4组XIAP、cIAPl和Bel—xL分别为(17.59±1.96)%、(16.45±1.85)%和(19.92-4-2.22)%,(98.37±17.92)%、(109.81±19.16)%和(95.59±22.20)%,(98.43±18.71)%、(98.86±15.88)%和(100.99±21.70)%,(7.00±0.95)%、(5.86±0.35)%和(9.52±0.90)%,差异均有统计学意义(F=44.22、56.51和29.11,均P〈0.01);^131I作用后三者表达增加(qB:A组=Ⅷ=7.76、8.40和5.88,均P〈0.01);055siRNA可抑制三者表达(qBD自=8.82、9.40和6.71,均P〈0.01)。6组caspase3亚基p19和p17、PARP活性蛋白p116和失活产物p89差异均有统计学意义(F=39.03、48.45、32.56和52.20,均P〈0.01);3、4和6组比q=3.18~9.98,均P〈0.05。结论^131I通过活化NF—KB导致甲状腺癌细胞内凋亡抑制因子表达升高,p65siRNA可抑制这种变化;联合使用p65siRNA对^131I致DTC细胞凋亡产生协同效应。
Objective To study the effect of nuclear factor-kappa B (NF-KB) inhibition by small interference RNA (siRNA) on the apoptosis of DTC cells treated by ^131I. Methods DNA binding assay was performed at 24 h after ^131I treatment (2 × 10^4 MBq/L) on KTC-1 ceils. The cell survival assay was conducted at 48 h after ^131I treatment. Western blot was used to detect the changes of NF-KB p65 at 6 h after ^131 I treatment, and the changes of anti-apoptotic factors and apoptotic key factors at 24 h after %131 I treatment. The anti-apoptotic factors included in this study were X chromosome-linked inhibitor of apoptosis ( XIAP), cellular inhibitor of apoptosis 1 ( cIAP1 ) and B-cell lymphoma extra large ( Bcl-xL), and the apoptotic key factors were caspase 3 and poly-ADP-ribose polymerase (PARP). A total of 4 groups were studied for the detection of p65 and anti-apoptotic factors by Western blot: no oligonucleotide transfection control group (A), no oligonucleotide transfection + ^131I group (B), scrambled oligonucleotides transfection + ^131I group (C) and p65 siRNA transfection + ^131I group (D). Another 6 groups of studies were : oligonucleotide transfection control group (1) , scrambled oligonucleotides transfection group (2), p65 siRNA transfection group (3), no oligonucleotide transfection + ^131I group (4), scrambled oligonucleotides transfection + ^131I group (5) and p65 siRNA transfection + ^131I group (6). One-way analysis of variance and q test were performed for statistical analysis. Results The results of DNA binding assays for the 6 groups ( 1, 2, 3, 4, 5, 6) were (100.00+11.65)%, (96.00±17.98)%, (9.28 ±5.01)%, (322.72±50.81)%, (311.36 +44.81)% and (36.96 ± 15.66)%, respectively (F = 137.74, P 〈0.01 ). NF-KB functions were strengthened with 1311 treatment (qgroup4:1 = 10.90, qgroup5:2 = 11.38, both P 〈0.01). However, NF-KB p65 siRNA transfection could inhibit NF-KB functions (qgoupl:3 = 18. 25, qgroup4:6 = 13. 71, both P 〈 0. 01 ). Cell survival rates of the 6 groups were ( 100.00 ± 11.65 ) % , (96.32 ± 9.44 ) % , ( 70. 88 ± 7.41 ) %, (64.16 ± 9.50) %, (62.24 ± 9.37) % and (28.64 ± 6.74) % (F = 52.76, P 〈 0.01 ). There were significant differences between groups 3 and 6, groups 4 and 6 ( q = 10.76 and 7.79, both P 〈 0.01 ). Western blot results showed that the expression of NF-KB p65 in the 4 groups (A, B, C, D) were (56.60 ± 7.37)%, (111.07 ± 13.31)%, (113.16 ± 15.04)% and (12.46 ±2.74)%, respectively (F=60.17, P 〈0. 01). The p65 levels increased with 13tI treatment (qsroup S:A = 6. 20, qsroup C:A = 5. 85, both P 〈 0. 01 ); while decreased significantly using NF-KB p65 siRNA transfection (qsroup B:D = 12. 57; qsroup C:D = 11.41, both P 〈0. 01 ). Western blot results showed that XIAP, clAP1 and Bcl-xL in the 4 groups were (17.59±1.96)%, (16.45 ±1.85)% and (19.92 ±2.22)%; (98.37±17.92)%, (109.81 ± 19. 16)% and (95.59 ±22.20)% ; (98.43 ±18.71)%, (98.86 ± 15.88)% and (100.99 ±21.70)% ; (7.00 ± 0. 95 ) %, (5.86 ± 0.35 ) % and (9.52 ± 0.90) % , respectively ( F = 44.22, 56.51 and 29.11, all P 〈 0.01 ).^131I treatment induced higher expression of all the 3 genes (qroup B: A = 7. 76, 8.40 and 5.88, all P 〈0.01 ) , while NF-KB p65 siRNA transfection, on the contrary, reduced the expression of all the 3 genes (qsroup B:D = 8. 82, 9. 40 and 6.71, all P 〈 0.01 ). There were significant differences of p19, p17, p116 and p89 in the 6 groups(F = 39.03, 48.45, 32.56, 52.20, all P 〈 0. 01 ) , especially among group 3, 4 and 6 (q = 3.18 - 9.98, all P 〈 0.05 ). Conclusions ^131I could activate NF-KB function and enhance the expressions of anti-apoptotie factors. NF-KB p65 siRNA transfection could effectively suppress this effect and therefore magnify ^131I induced apoptosis in DTC cells.
出处
《中华核医学与分子影像杂志》
CSCD
北大核心
2013年第3期207-212,共6页
Chinese Journal of Nuclear Medicine and Molecular Imaging
基金
国家自然科学基金(30900376)
天津市科委应用基础及前沿技术研究计划(10JCZJC19000)