期刊文献+

小干扰RNA抑制核因子-κB增强^131I治疗甲状腺癌疗效的研究 被引量:2

Synergistic effects of nuclear factor-kappa B inhibition by small interferece RNA on ^131I therapy in differentiated thyroid cancer cells
原文传递
导出
摘要 目的探讨小干扰RNA(siRNA)抑制核因子-κB(NF—KB)对^131I致DTC细胞凋亡能否产生协同作用。方法2×10^4 MBq/L^131I作用人甲状腺乳头状癌细胞株KTC-124h后做DNA结合实验,48h后做细胞存活分析。Westernblot鉴定^131I作用6h后细胞NF—KBp65的变化,24h后凋亡抑制因子[X-染色体相关凋亡抑制蛋白(XIAP)、细胞凋亡抑制因子1(eIAPl)、B细胞淋巴瘤因子大亚基(Bel—xL)]、凋亡关键因子[半胱氨酸蛋白酶(caspase3)和多聚腺苷二磷酸核糖聚合酶(PARP)]的变化。p65和凋亡抑制因子的Westernblot检测分4组:未转染(A)组、未转染+^131I(B)组、转染对照siRNA+^131I(c)组和转染p65siRNA+^131I(D)组;其余实验分为6组:未转染(1)组、转染对照siRNA(2)组、转染p65siRNA(3)组、未转染+^131I(4)组、转染对照siRNA+^131I(5)组和转染p65siRNA+^131I(6)组。多组间均数比较采用单因素方差分析,均数两两比较采用q检验。结果1至6组DNA结合率分别为(100.00±11.65)%、(96.00±17.98)%、(9.28-I-5.01)%、(322.72±50.81)%、(311.36±44.81)%和(36.96±15.66)%,差异有统计学意义(F=137.74,P〈0.01);^131I作用后KTC-1细胞NF—KB活性均增强(q4:1自=10.90,q5:2g=11.38,均P〈0.01);p65siRNA可抑制NF—KB功能(q㈦目=18.25,q46目=13.71,均P〈0.01)。6组细胞存活率分别为(100.00±11.65)%、(96.32±9.44)%、(70.88±7.41)%、(64.16±9.50)%、(62.24±9.37)%和(28.64±6.74)%(F=52.76,P〈0.01);3、4和6组比,q=10.76和7.79,均P〈0.Ol。Westernblot结果显示A、B、C和D组p65相对表达水平分别为(56.60±7.37)%、(111.07±13.31)%、(113.16±15.04)%和(12.46±2.74)%,差异有统计学意义(F=60.17,P〈0.01);^131I作用后p65浓度增高(qB:A组=6.20,qC:A组=5.85,均P〈0.01);p65siRNA可抑制其浓度增高(q帅自=12.57,qC:D组=11.41,均P〈0.01)。4组XIAP、cIAPl和Bel—xL分别为(17.59±1.96)%、(16.45±1.85)%和(19.92-4-2.22)%,(98.37±17.92)%、(109.81±19.16)%和(95.59±22.20)%,(98.43±18.71)%、(98.86±15.88)%和(100.99±21.70)%,(7.00±0.95)%、(5.86±0.35)%和(9.52±0.90)%,差异均有统计学意义(F=44.22、56.51和29.11,均P〈0.01);^131I作用后三者表达增加(qB:A组=Ⅷ=7.76、8.40和5.88,均P〈0.01);055siRNA可抑制三者表达(qBD自=8.82、9.40和6.71,均P〈0.01)。6组caspase3亚基p19和p17、PARP活性蛋白p116和失活产物p89差异均有统计学意义(F=39.03、48.45、32.56和52.20,均P〈0.01);3、4和6组比q=3.18~9.98,均P〈0.05。结论^131I通过活化NF—KB导致甲状腺癌细胞内凋亡抑制因子表达升高,p65siRNA可抑制这种变化;联合使用p65siRNA对^131I致DTC细胞凋亡产生协同效应。 Objective To study the effect of nuclear factor-kappa B (NF-KB) inhibition by small interference RNA (siRNA) on the apoptosis of DTC cells treated by ^131I. Methods DNA binding assay was performed at 24 h after ^131I treatment (2 × 10^4 MBq/L) on KTC-1 ceils. The cell survival assay was conducted at 48 h after ^131I treatment. Western blot was used to detect the changes of NF-KB p65 at 6 h after ^131 I treatment, and the changes of anti-apoptotic factors and apoptotic key factors at 24 h after %131 I treatment. The anti-apoptotic factors included in this study were X chromosome-linked inhibitor of apoptosis ( XIAP), cellular inhibitor of apoptosis 1 ( cIAP1 ) and B-cell lymphoma extra large ( Bcl-xL), and the apoptotic key factors were caspase 3 and poly-ADP-ribose polymerase (PARP). A total of 4 groups were studied for the detection of p65 and anti-apoptotic factors by Western blot: no oligonucleotide transfection control group (A), no oligonucleotide transfection + ^131I group (B), scrambled oligonucleotides transfection + ^131I group (C) and p65 siRNA transfection + ^131I group (D). Another 6 groups of studies were : oligonucleotide transfection control group (1) , scrambled oligonucleotides transfection group (2), p65 siRNA transfection group (3), no oligonucleotide transfection + ^131I group (4), scrambled oligonucleotides transfection + ^131I group (5) and p65 siRNA transfection + ^131I group (6). One-way analysis of variance and q test were performed for statistical analysis. Results The results of DNA binding assays for the 6 groups ( 1, 2, 3, 4, 5, 6) were (100.00+11.65)%, (96.00±17.98)%, (9.28 ±5.01)%, (322.72±50.81)%, (311.36 +44.81)% and (36.96 ± 15.66)%, respectively (F = 137.74, P 〈0.01 ). NF-KB functions were strengthened with 1311 treatment (qgroup4:1 = 10.90, qgroup5:2 = 11.38, both P 〈0.01). However, NF-KB p65 siRNA transfection could inhibit NF-KB functions (qgoupl:3 = 18. 25, qgroup4:6 = 13. 71, both P 〈 0. 01 ). Cell survival rates of the 6 groups were ( 100.00 ± 11.65 ) % , (96.32 ± 9.44 ) % , ( 70. 88 ± 7.41 ) %, (64.16 ± 9.50) %, (62.24 ± 9.37) % and (28.64 ± 6.74) % (F = 52.76, P 〈 0.01 ). There were significant differences between groups 3 and 6, groups 4 and 6 ( q = 10.76 and 7.79, both P 〈 0.01 ). Western blot results showed that the expression of NF-KB p65 in the 4 groups (A, B, C, D) were (56.60 ± 7.37)%, (111.07 ± 13.31)%, (113.16 ± 15.04)% and (12.46 ±2.74)%, respectively (F=60.17, P 〈0. 01). The p65 levels increased with 13tI treatment (qsroup S:A = 6. 20, qsroup C:A = 5. 85, both P 〈 0. 01 ); while decreased significantly using NF-KB p65 siRNA transfection (qsroup B:D = 12. 57; qsroup C:D = 11.41, both P 〈0. 01 ). Western blot results showed that XIAP, clAP1 and Bcl-xL in the 4 groups were (17.59±1.96)%, (16.45 ±1.85)% and (19.92 ±2.22)%; (98.37±17.92)%, (109.81 ± 19. 16)% and (95.59 ±22.20)% ; (98.43 ±18.71)%, (98.86 ± 15.88)% and (100.99 ±21.70)% ; (7.00 ± 0. 95 ) %, (5.86 ± 0.35 ) % and (9.52 ± 0.90) % , respectively ( F = 44.22, 56.51 and 29.11, all P 〈 0.01 ).^131I treatment induced higher expression of all the 3 genes (qroup B: A = 7. 76, 8.40 and 5.88, all P 〈0.01 ) , while NF-KB p65 siRNA transfection, on the contrary, reduced the expression of all the 3 genes (qsroup B:D = 8. 82, 9. 40 and 6.71, all P 〈 0.01 ). There were significant differences of p19, p17, p116 and p89 in the 6 groups(F = 39.03, 48.45, 32.56, 52.20, all P 〈 0. 01 ) , especially among group 3, 4 and 6 (q = 3.18 - 9.98, all P 〈 0.05 ). Conclusions ^131I could activate NF-KB function and enhance the expressions of anti-apoptotie factors. NF-KB p65 siRNA transfection could effectively suppress this effect and therefore magnify ^131I induced apoptosis in DTC cells.
出处 《中华核医学与分子影像杂志》 CSCD 北大核心 2013年第3期207-212,共6页 Chinese Journal of Nuclear Medicine and Molecular Imaging
基金 国家自然科学基金(30900376) 天津市科委应用基础及前沿技术研究计划(10JCZJC19000)
关键词 甲状腺肿瘤 细胞凋亡 碘放射性同位素 RNA 小干扰 核因子一kappa B Thyroid neoplasms Cell apoptosis Iodine radioisotopes RNA, small interfering Nuclear factor-kappa B
  • 相关文献

参考文献8

  • 1American Thyroid Association ( ATA) Guidelines Taskforce onThyroid Nodules and Differentiated Thyroid Cancer, Cooper DS,Doherty GM, et al. Revised American Thyroid Association man-agement guidelines for patients with thyroid nodules and differenti-ated thyroid cancer. Thyroid, 2009,19: 1167-1214.
  • 2孟召伟.^131I对分化型甲状腺癌细胞核因子κB表达和功能的影响[J].中华核医学与分子影像杂志,2012,32(1):54-58. 被引量:6
  • 3孟召伟,谭建.核因子κB抑制剂对^131Ⅰ导致甲状腺癌细胞凋亡的协同作用[J].中华核医学与分子影像杂志,2012,32(5):374-378. 被引量:5
  • 4Meng Z,Mitsutake N,Nakashima M,et al. Dehydroxymethylep-oxyquinomicin, a novel nuclear Factor-kappaB inhibitor, enhancesantitumor activity of taxanes in anaplastic thyroid cancer cells. En-docrinology, 2008, 149: 5357-5365.
  • 5孔瑞,孙备,王双佳,潘尚哈,王刚,陈华,薛东波,姜洪池.NF-κBP65亚基siRNA增强吉西他宾诱导胰腺癌细胞凋亡作用的实验研究[J].中华外科杂志,2010,48(2):128-133. 被引量:4
  • 6Duan J, Friedman J, Nottingham L, et al. Nuclear factor-kappaBp65 small interfering RNA or proteasome inhibitor bortezomib sensi-tizes head and neck squamous cell carcinomas to classic histonedeacetylase inhibitors and novel histone deacetylase inhibitorPXD101. Mol Cancer Ther, 2007,6: 37-50.
  • 7Wang C, Sheng G, Lu J, et al. Effect of RNAi-induced down reg-ulation of nuclear factor kappa-B p65 on acute monocytic leukemiaTHP-1 cells in vitro and vivo. Mol Cell Biochem, 2012, 359 : 125-133.
  • 8Wu W,Yao D, Wang Y, et al. Suppression of human hepatoma(HepG2) cell growth by nuclear factor-kappaB/p65 specific siRNA.Tumour Biol, 2010, 31 : 605-611.

二级参考文献34

  • 1张太平,赵玉沛.胰腺癌的分子生物学特性及治疗进展[J].中华外科杂志,2007,45(1):43-44. 被引量:4
  • 2Endlicher E,Troppmann M, Kullmann A, et al. lrinotecan plus gemcitabine and 5-fluorouracil in advanced pancreatic cancer: a phase II study. Oncology,2007 ,72 :279-284.
  • 3Arh A ,Gehvz A,Mtierkoster S ,et al. Role of NF-kB and Akt/P13K in the resistance of pancreatic carcinoma cell lines against gemcitabine-induced cell death. Oncogene, 2003,22 : 3243-3251.
  • 4Guo J, Verma UN, Gaynor RB,et al. Enhanced chemosensitivity to irinotecan by RNA interference mediated down-regulation of the nuclear factor-kB p65 subunit. Clin Cancer Res,2004,10: 3333- 3341.
  • 5Tang ZY,Wu YL, Gao SL, et al. Effects of the proteasome inhibitor hortezomih on gene expression profiles of pancreatic cancer cells. J Surg Res,2008,145 : 111-123.
  • 6Beger HG, Rau B, Gansauge F, et al. Treatment of pancreatic cancer: challenge of the facts. World J Surg,2003 ,27 :1075-1084.
  • 7Duxbury MS, Ito H, Zinner MJ, et al. RNA interference targeting the M2 subunit of ribonueleotide reductase enhances pancreatic adenoeareinoma ehemosensitivitv to gemcitabine. Oneogene,2004, 23:1539-1548.
  • 8Kunnumakkara AB, Guha S, Krishnan S, et al. Curcumin potentiates antitumor activity of gemcitabine in an orthotopic model of pancreatic cancer through suppression of proliferation, angiogenesis, and inhibition of nuclear factor-KB-regulated gene products. Cancer Res ,2007,67:3853-3861.
  • 9Banerjee S,Zhang Y, Ali S, et al. Molecular evidence for increased antitumor activity of gemcitabine by genistein in vitro and in vivo using an orthotopic model of pancreatic cancer. Cancer Res,2005, 65:9064-9072.
  • 10Wang W, Abbruzzese JL, Evans DB,et al. The nuclear factor-kappa B RelA transcription factor is constitutively activated in human pancreatic adenocarcinoma cells. Clin Cancer Res, 1999,5: 119- 127.

共引文献10

同被引文献36

  • 1Siegel R,Naishadham D,Jemal A.Cancer statistics,2013[J].CA Cancer J Clin,2013,63:11-30.
  • 2Pfister DG,Fagin JA.Refractory thyroid cancer:a paradigm shift in treatment is not far off[J].J Clin Oncol,2008,26:4701-4704.
  • 3Tan J,Zhang G,Xu W,et al.Thyrotoxicosis due to functioning metastatic follicular thyroid carcinoma after twelve 131I therapies[J].Clin Nucl Med,2009,34:615-619.
  • 4Durante C,Haddy N,Baudin E,et al.Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma:benefits and limits of radioiodine therapy[J].J Clin Endocrinol Metab,2006,91:2892-2899.
  • 5Schlumberger M,Sherman SI.Approach to the patient with advanced differentiated thyroid cancer[J].Eur J Endocrinol,2012,166:5-11.
  • 6Ho AL,Grewal RK,Leboeuf R,et al.Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer[J].N Engl J Med,2013,368:623-632.
  • 7Li X,Abdel-Mageed AB,Mondal D,et al.The nuclear factor kappa-B signaling pathway as a therapeutic target against thyroid cancers[J].Thyroid,2013,23:209-218.
  • 8Meng Z,Lou S,Tan J,et al.Nuclear factor-kappa B inhibition can enhance apoptosis of differentiated thyroid cancer cells induced by 131I[J].PLoS One,2012,7:e33597.
  • 9Meng Z,Lou S,Tan J,et al.Nuclear factor-kappa B inhibition can enhance therapeutic efficacy of 131I on the in vivo management of differentiated thyroid cancer[J].Life Sci,2012,91:1236-1241.
  • 10Oeckinghaus A,Hayden MS,Ghosh S.Crosstalk in NF-κB signaling pathways[J].Nat I mmunol,2011,12:695-708.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部