期刊文献+

E2F1调控细胞周期时程补偿机制的定量研究 被引量:1

A quantitative investigation of E2F1-regulated cell cycle compensation mechanism
下载PDF
导出
摘要 目的构建果蝇细胞周期调控的数学模型。方法使用一组常微分方程描述细胞周期网络中核心分子的相互作用,计算分子浓度的连续周期性变化,并捕获分子交互的离散事件。结果计算结果吻合实验观测到的分子浓度的周期变化,揭示和解释了细胞周期时程补偿的数学机制与定量特性。结论 E2F1(E2F transcription factor 1)所联结的正负反馈是调控G1/S与G2/M时程补偿的核心机制。 Objective To explore the core mechanism of cell cycle compensation using a mathematical model. Methods A set of ordinary differential equations were used to describe the interactions between the core cell cycle molecules. Continuous and cyclic changes of the concentrations of these molecules were computed to capture the discrete events of molecular interactions. Results The calculated molecule concentrations and captured signaling events agreed with the experimental results. Conclusion E2F transcription factor 1 is the pivotal element linking the positive and negative feedbacks and regulating G,/S and GdM phase compensation.
作者 刘文音 朱浩
出处 《南方医科大学学报》 CAS CSCD 北大核心 2013年第6期870-873,共4页 Journal of Southern Medical University
基金 国家自然科学基金项目(31071165)~~
关键词 数学模型 细胞分裂 细胞周期 E2F1 mathematical model cell division cell cycle feedback E2F1
  • 相关文献

参考文献13

  • 1Yao G, Lee TJ, Mori S, et al. A bistable Rb-E2F Switch underlies the restriction point[J]. Nat Cell Biol, 2008, 10(4): 476-82.
  • 2Fen'ell JE Jr, Tsai TY, Yang Q. Modeling the cell cycle: why do certain circuits oscillate [J]. Cell, 2011,144(6): 874-85.
  • 3G6rard C, Goldbeter A. Temporal self-organization of the cyclin/ Cdk network driving the mammalian cell cycle [J]. Proe Natl Acad Sci USA, 2009, 106(51): 21643-8.
  • 4Barik D, Baumann WT, Paul MR, et al. A model of yeast cell-cycle regulation based on multisite phosphorylation [J]. Mol Syst Biol, 2010, 6(405): 405.
  • 5G6rard C, Goldbeter A. From simple to complex patterns of oscillatory behavior in a model for the mammalian cell cycle containing multiple oscillatory circuits [J]. Chaos, 2010, 20(4): 045109.
  • 6Reis T, Edgar BA. Negative regulation of dE2F1 by cyclin- dependent kinases controls cell cycle timing[J]. Cell, 2004, 117(2): 253-64.
  • 7Morgan DO. The cell cycle: principles of control [M]. London: New Science Press, 2007: 1-54.
  • 8Edelstein-Keshet L. Mathematical models in biology[M]. SIAM Press, 2004: 122-30.
  • 9Zhu H, Wu Y, Huang S, et al. Cellular automata with object- oriented features for parallel molecular network modeling[J]. IEEE Trans Nanobioscience, 2005, 4(2): 141-8.
  • 10Ubiquitylation LT. proteasomal degradation of the p21. (Cipl), p27 (kipl)and p57(kip2)CDK inhibitors [J]. Cell Cycle, 2010, 9(12): 2342-52.

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部