期刊文献+

枯草芽胞杆菌168不对称转化产生磷霉素的蛋白质组学分析 被引量:1

Proteomic analysis of Bacillus subtilis 168 transforming cis-propenylphosphonic acid to fosfomycin
原文传递
导出
摘要 旨在用蛋白质组学方法揭示枯草芽胞杆菌Bacillus subtilis 168将顺丙烯磷酸转化成磷霉素的机理。B.subtilis 168能够将顺丙烯磷酸不对称转化成磷霉素。气相色谱分析发现在转化培养基发酵液中的磷霉素的含量达816.6μg/mL,转化率为36.05%。将分别培养在含有底物和不含底物的培养基中的B.subtilis 168的胞质蛋白进行双向凝胶电泳。对两种条件下的电泳图谱进行比较,发现有98个差异表达蛋白。其中在有底物存在时,表达量下调的点有20个,表达量上调的点52个,底物特异性表达的点有26个。对差异表达蛋白进行质谱鉴定,共鉴定到80个蛋白点,其中下调的点17个,上调的点45个,底物特异性表达的点18个。这些蛋白分别参与胁迫反应、氧化还原反应、物质转运、核苷酸代谢、糖代谢、氨基酸和蛋白质代谢等。根据上述对B.subtilis 168蛋白质组学分析结果,推测菌株是通过两步将顺丙烯磷酸转化成磷霉素的。第一步是水化反应,第二步是脱氢反应。 In this study, we investigated the mechanism of transformation by Bacillus subtilis strain 168 by proteomic analysis. B. subtilis strain 168 was able to stereoselectively transform cis-propenylphosphonic acid (cPPA) to fosfomycin. The maximal fosfomycin production was 816.6μg/mL after two days cultivation, with a conversion rate of 36.05%. We separated the whole cellular proteins by two-dimensional gel electrophoresis (2-DE) method, and 562 protein spots were detected in the presence of cPPA in the medium, while 527 protein spots were detected in the absence of cPPA. Of them, 98 differentially expressed protein spots were found. Among them, 52 proteins were up-regulated whereas 20 were down-regulated in the presence of cPPA in the medium, and 26 induced at the presence of cPPA. The differentially expressed proteins were analyzed by combined MS and MS/MS methods. Eighty protein spots, including 45 up-regulated proteins, 17 down-regulated proteins, and 18 induced by cPPA were identified. Based on the results of proteomic analysis, we postulated two steps of transformation: in the first step, cPPA was hydrated to 2-hydroxypropylphosphonic acid; in the second step, 2-bydroxypropylphosphonic acid was transformed to fosfomycin via a dehydrogenation reaction.
出处 《生物工程学报》 CAS CSCD 北大核心 2013年第6期735-750,共16页 Chinese Journal of Biotechnology
基金 中国科学院知识创新工程重要方向项目(No.KSCX2-YW-G-051)资助~~
关键词 枯草芽胞杆菌 顺丙烯磷酸 磷霉素 转化 蛋白质组学分析 Bacillus subtilis strain 168, cis-propenylphosphonic acid, fosfomycin, transformation, proteomic analysis
  • 相关文献

参考文献25

  • 1Hendlin D, Stapley EO, Jackson M, et al. Phosphonomycin, a new antibiotic produced by strains of Streptomyces. Science, 1969, 166(3901): 122-123.
  • 2Shoji J, Kato T, Hinoo H, et al. Production of fosfomycin (phosphonomycin) by Pseudomonas syringae. J Antibiot, 1986, 39(7): 1011-1012.
  • 3Ribes S, Taberner F, Domenech A, et al. Evaluation of fosfomycin alone and in combination with ceftriaxone or vancomycin in an experimental model of meningitis caused by two strains of cephalosporin-resistant Streptococcus pneumoniae. J Antimicrob Cbemother, 2006, 57(5): 931-936.
  • 4Apisarnthanarak A, Mundy LM. Successful treatment of disseminated methicillin-resistant Staphylococcus aureus with fosfomycin, cefoperazone/sulbactam and rifampin followed by fusidic acid and rifampin. Int J Infect Dis, 2007, 11(3): 283-284.
  • 5Higgins L J, Yan F, Liu PH, et al. Structural insight into antibiotic fosfomycin biosynthesis by a mononuclear iron enzyme. Nature, 2005, 437(7060): 838-844.
  • 6Cilli F, Pullukcu H, Aydemir S, et al. In vitro activity of fosfomycin tromethamine and linezolid against vancomycin-resistant Enterococcus faecium isolates. Int J Antimicrob Agents, 2008, 31(3): 296-298.
  • 7White RF, Birnbaum J, Meyer RT, et al. Microbialepoxidation of cis-propenylphosphonic to (-)-cis- 1,2-epoxypropylphosphonic acid. Appl Microbiol, 1971, 22(1): 55-66.
  • 8Itoh N, Kusaka M, Hirota T, et al. Microbial production of antibiotic fosfomycin by a stereoselective epoxidation and its formation mechanism. Appl Microbiol Biotechnol, 1995, 43(3): 394-401.
  • 9Aisaka K, Ohshiro T, Uwajima T. Optimum culture conditions for the epoxidation of cis-propenylphosphonate to fosfomycin by cellvibrio gilvus. Appl Microbiol Biotechnol, 1992, 36(4): 431-435.
  • 10石家骥,崔福绵,葛猛.青霉菌立体选择性环氧化顺丙烯磷酸产生磷霉素[J].微生物学报,2001,41(3):353-356. 被引量:11

二级参考文献1

共引文献10

同被引文献20

  • 1孙长贵,曾贤铭,杨燕.肉汤稀释法酵母菌药物敏感性试验及质量控制介绍[J].江西医学检验,2007,25(1):57-60. 被引量:17
  • 2Shima S, Matsuoka H, Iwamoto T, Sakai H. Antimicrobial action of e-poly-L-lysine. The Journal of Antibiotics, 1984, 37 ( 11 ) : 1449-1455.
  • 3Shima S, Fukuhara Y, Sakai H. Inactivation of bacteriophages by e-poly-L-lysine produced by Streptomyces. Agricultural and Biological Chemistry, 1982, 46(7) : 1917-1919.
  • 4Hiraki J, Ichikawa T, Ninomiya S, Seki H, Uohama K,Seki H, Kimura S, Yanagimoto Y. Use of ADME studies to confirm the safety of 8-polylysine as a preservative in food. Regulatory Toxicology and Pharmacology, 2003, 37 (2) : 328-340.
  • 5刘盛荣.ε-聚赖氨酸生物合成及代谢调控研究.华南理工大学博士学位论文,2012.
  • 6Kito M, Takimoto R, Yoshida T, Nagasawa T. Purification and characterization of an ε-poly-L-lysine- degrading enzyme from an ε-poly-L-lysine-producing strain of Streptomyces albulus. Archives of Microbiology, 2002, 178(5) : 325-330.
  • 7Kito M, Takimoto R, Onji Y, Yoshida T, Nagasawa T. Purification and characterization of an ε-poly-lysine- degrading enzyme from the ε-poly-L-lysine-tolerant Chryseobacterium sp. O J7. Journal of Bioscience and Bioengineering, 2003, 96( 1 ) : 92-94.
  • 8Feng X, Xu H, Xu X, Yao J, Yao Z. Purification and some properties of ε-poly-L-lysine-degrading enzyme from Kitasatospora sp. CCTCC M205012. Process Biochemistry, 2008, 43 (6) : 667-672.
  • 9Takehara M, Aihara Y, Kawai S, Yoshikabu H, Inoue Y, Hirohara H. Strain producing low molecular weight ε- poly-L-lysine and production of low molecular weight ε- poly-l-lysine using the strain. Japan patent: 2001-17159, 2001.
  • 10Chen X, Li S, Liao L, Ren X, Li F, Tang.L, Zhang J, Mao Z. Production of ε-poly-L-lysine using a novel two- stage pH control strategy by Streptomyces sp. M-Z18 from glycerol. Bioprocess and Biosystems Engineering, 2011, 34(5) : 561-567.

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部