期刊文献+

一种求解稀疏信号重构的新算法

New Algorithm for Sparse Signals Reconstruction
下载PDF
导出
摘要 由于允许从少量数据中恢复原始信号的压缩感知的引入,基于1范数正则化的最优化方法近来越来越受到重视。利用最小二乘问题的一种等价形式和Bregman迭代方法的一些技巧,本文推导出了可以用于稀疏信号重构求解的非满秩情况下的A+线性Bregman迭代方法的一种新的等价形式,并证明了它与原形式的等价性。 The class of l1 norm regularization problems has received much attention recently because of the introduction of "compressed sensing" which allows signals to be reconstructed from small amounts of data. With an equivalent form of least squares problem and some techniques of Bregman iterative methods, we induced a derivation of A+ linear Bregman iteration method that is equivalent to the one that exits.
作者 戚平
出处 《计算机科学》 CSCD 北大核心 2013年第06A期93-95,共3页 Computer Science
关键词 最小二乘问题 Bregman迭代正则化 MOORE-PENROSE逆 Least squares problem,Bregman iterative regularization,Moore-Penrose inverse
  • 相关文献

参考文献11

  • 1Chen S S,Donoho D L, Saunders M A. Atomic decomposition by basis pursuit[J]. SIAM J. Sci. Comput, 1998,20 : 33-61.
  • 2Candes E, Romberg J, Tao T. Robust uncertainty principles: ex- act signal reconstruction from highly incomplete frequency in- formation[J]. IEEE Trans. Inform. Theory, 2006,52 : 489-509.
  • 3Donoho D L. Compressed Sensing[J]. IEEE Trans. Inform. The- ory, 2006,52 : 1289-1306.
  • 4Hale E, Yin W, Zhang Y. A Fixed-Point Continuation Method for L1-Regularization with Application to Compressed Sensing [R]. CAAM Technical Report tr07-07. Rice University, Hous- ton, TX, 2007.
  • 5Yin W, Osher S, Goldfarb D, et al. Bregman iterative algorithms for gl-Regularization with Application to Compressed Sensing [J]. SIAM J. Imaging Sciences, 2008,1 : 143-168.
  • 6Cai J F, Chan R H, Shen Z. Linearizad Bregman iterations for compresses sensing[J]. Math. Comp. , 2009,78(267) : 1515-1536.
  • 7Cai J F, Osher S, Shen S W. Linearized Bregman Iteration for Frame-Based Image Deblurring[J]. SIAM J. Imaging Sciences, 2009,2 (1) : 226-252.
  • 8张慧,成礼智.A^-线性Bregman迭代算法[J].计算数学,2010,32(1):97-104. 被引量:14
  • 9Ben-Israel A, Greville T N E. Generalized inverses:Theory and Applications(2nd ed) [M]. New York, NY: Springer, 2003: 35- 130.
  • 10Osher S, Mao Y, Dong B, et al. Fast Linearized Bregman Itera- tion for Compressed Sensing and Sparse Denoising[R]. Report 08-37,UCLA. CAM, 2008: 1-18.

二级参考文献14

  • 1Donoho D L. Compressed sensing[J].IEEE Transactions on Information Theory, 2006, 52: 1289- 1306.
  • 2Candes E, Romberg J and Tao T. Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information[J].IEEE Transactions on Information Theory, 2006, 52: 489-509.
  • 3Chen S S, Donoho D L and Saunders M A. Atomic decomposition by basis pursuit[J]. SIAM J. Sci. Comput., 1998, 20:33-61.
  • 4Hale E, Yin W and Zhang Y. A Fixed-Point Continuation Method for l1-Regularization with Applicatioin to Compressed Sensing[R].CAAM Technical report TR07-07, Rice Univercity, Houston, TX, 2007.
  • 5Yin W, Osher S, Goldfarb D, and Darbon J. Bregman iterative algorithms for l1-Regularization with Applicatioin to Compressed Sensing[J]. SIAM J. Imaging Sic., 2008, 1:143-168.
  • 6Cai J F, Chan R H and Shen Z. Linearized Bregman iterations for compressed sensing[J]. Math, Comp., to appear, 2008.
  • 7UCLA CAM Report(08-06). Math. Comp., 2009, 78(267): 1515-1536.
  • 8Cai J F, Chan R H and Shen Z. Convergence of the Linearized Bregman iterations for l1-Norm Minimization[R]. 2008.
  • 9UCLA CAM Report(08-52). Math. Comp., 2009, 78(268): 2127-2136.
  • 10Osher S, Mao Y, B Dong and W.Yin. Fast Linearized Bregman Iteration for Compressed Sensing and Sparse Denoisng[R]. 2008, UCLA CAM Report(08-37).

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部