期刊文献+

基于相容粗糙集的改进的基因特征选择方法

Evolutionary Gene Selection Based on Tolerance Rough Set Theory
下载PDF
导出
摘要 在基因表达数据中,有效的基因选择方法是癌症基因数据研究的重要内容。粗糙集是一个去掉冗余特征的有效工具。由于基因表达数据的连续性,为了避免运用粗糙集方法所必须的离散化过程带来的信息丢失,将相容粗糙集应用于基因的特征选择,提出基于相容粗糙集的基因特征选择方法,并在此方法基础上进一步对粗糙集的边界域进行研究,提出了基于相容粗糙集的改进的基因特征选择方法。在两个标准的基因表达数据上进行实验,结果表明与传统的基因特征选择方法相比,所提方法能够有效提高分类精度。 Gene selection is to select the most informative genes from the whole gene set,which is a key step of the discriminant analysis of microarray data. Rough set theory is an efficient mathematical tool for further reducing redundancy. The main limitation of traditional rough set theory is the lack of effective methods for dealing with real-valued data. However, gene expression data sets are always continuous. This has been addressed by employing discretization methods, which may result in information loss. This paper investigates one approach combining feature ranking together with features selection based on tolerance rough set theory. Moreover, this paper explores the other method which can utilize the information contained within the boundary region to improve classification accuracy in gene expression data. Compared with gene selection algorithm based on rough set theory, the proposed methods are more effective for selecting high discriminative genes in cancer classification task.
作者 焦娜
出处 《计算机科学》 CSCD 北大核心 2013年第06A期125-128,140,共5页 Computer Science
基金 上海高校青年教师培养资助计划(hdzf10008) 华东政法大学科研项目(11H2K034)资助
关键词 粗糙集 相容关系 基因特征选择 基因表达数据 癌症分类 Rough set theory, Tolerance relation, Gene selection, Gene expression data, Cancer classification
  • 相关文献

参考文献19

  • 1Tibshirani R, Hastie T, Narashiman B, et al. Diagnosis of multi- ple cancer types by shrunken centroids of gene expression[C]// Natal Academy of Sciences. USA, 2002 : 6567-6572.
  • 2Kohavi R,John G H. Wrappers for feature subset selection[J]. Artificial Intelligence, 1997 : 273-324.
  • 3Banerjee M, Mitra S, Banka H. Evolutinary-rough feature selec-tion in gene expression Data[J]. IEEE Transaction on Systems, Man, and Cyberneticd, Part C: Application and Reviews, 2007, 37:622-632.
  • 4Momin B F, Mitra S, Datta Gupta R. Reduct generation and cla- ssification of gene expression data[C]//Proceeding of First In- ternational Conference on Hybrid Information Technology (ICHICT06). New York, 2006 : 699-708.
  • 5Pawlak Z. Rough sets[J]. International Journal of Information Computer Science, 1982,11 (5) : 341-356.
  • 6Dubois D, Prade H. Putting rough sets and fuzzy sets together[J]. Intelligent Deeision Support, 1992 : 203-232.
  • 7Jensen R, Shen Q, Tolerance-based and fuzzy-rough feature se- lection[C]//Proceedings of the 16th International Conference on Fuzzy Systems(FUZZ- IEEE07). 2007:877-882.
  • 8Liang J Y, Li 1L Distance: A more comprehensible perspective for measures in rough set theory[J]. Knowledge-Based Sys- tems, 2012,27 : 126-136.
  • 9Parthaldin N M, Shen Q. Exploring the boundary region of tol- erance rough sets for feature seleetion[J]. Pattern Recognition, 2009,42 : 655-667.
  • 10Yao Y Y, Yao B X. Covering based rough set approximations [J]. Information Sciences, 2012,200: 91-107.

二级参考文献13

  • 1王珏,苗夺谦,周育健.关于Rough Set理论与应用的综述[J].模式识别与人工智能,1996,9(4):337-344. 被引量:264
  • 2苗夺谦.Rough Set理论及其在机器学习中的应用研究(博士学位论文)[M].北京:中国科学院自动化研究所,1997..
  • 3苗夺谦.Rough Set理论及其在机器学习中的应用研究[博士学位论文].北京:中国科学院自动化研究所,1997..
  • 4王珏,J Comput Sci Technol,1998年,13卷,2期,189页
  • 5Miao Duoqian,IEEE ICIPS’97,1997年,1155页
  • 6苗夺谦,博士学位论文,1997年
  • 7陆汝钤,人工智能,1996年
  • 8Wong S K M,Bull Polish Acad Sci,1985年,33卷,693页
  • 9Wang Jue,J Comput Sci Technol,1998年,13卷,2期,189页
  • 10苗夺谦,博士论文,1997年

共引文献634

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部