期刊文献+

无线传感器节点的故障诊断研究 被引量:1

Research on Fault Diagnosis of Wireless Sensor Nodes
下载PDF
导出
摘要 无线传感器网络节点发生故障不仅消耗节点的能量和网络带宽,甚至会造成网络瘫痪。在分析无线传感器网络节点故障类别的基础上,分别使用相关向量机、支持向量机等算法对其进行研究,并用节点的特征值及相应的故障类型训练相关向量机及支持向量机的分类器。仿真结果表明,相关向量机比支持向量机和人工神经网络有更高的诊断精度。 In Wireless Sensor Networks(WSNs) ,faulty sensor nodes may consume the limited energy and bandwidth of network. Furthermore, they will produce the paralysis of entire systems. In this paper, RVM and SVM algorithm was applied to fault diagnosis for sensor nodes based on the analysis of fault type of WSNs nodes, and then the values of the features and the corresponding fault types of wireless sensor nodes were used to train RVM and SVM classifier. Simulation results show that the diagnosis results of the RVM model for wireless sensor are better than those of SVM and ANN.
出处 《计算机科学》 CSCD 北大核心 2013年第06A期327-329,343,共4页 Computer Science
基金 国防科工委应用基础资金资助
关键词 无线传感器网络 故障诊断 相关向量机 支持向量机 人工神经网络 Wireless sensor networks(WSNs), Fault diagnosis, Relevance vector machine(RVM), Support vector maehine(SVM) ,Artificial neural networks(A_NN)
  • 相关文献

参考文献11

  • 1Pottie G J, Kaiser W J. Embedding the Internet: Wireless inte- grated network sensors[J]. Communications of the ACM, 2000, 43(5) : 51-58.
  • 2Tipping M E. Sparse Bayesian learning and the relevance vector machine[J]. The Journal of Machine Learning Research, 2001, 3:211.
  • 3Vapnik V N. The Nature of Statistical Learning Theory(2nd ed) [M]. New York, USA: Springer-Verlag, 1995.
  • 4Scholkopf B, Alexander J S. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond [M]. London: The MIT Press, 2001.
  • 5Vladimir N V. The Nature of Statistical Learning Theory[M]. New York: Springer, 1995.
  • 6Kropotov D, Ptashko N,Vasiliev O, et al. On kernel selection in relevance vector machines using stability principle [C]//The 18th International Conference on Pattern Recognition (ICPR 06). 2006.
  • 7Zhang Q, Benveniste A. Wavelet networks[J]. IEEE Trans on Neural Networks, 1992,3(6) : 889-898.
  • 8Vapnik V N. Estimation of dependencies based on empirical data [M]. Berlin: Springer-Verlag, 1982.
  • 9Zhang L, Zhou W D, Jiao L C. Wavelet support vector machine [J]. IEEE Trans Syst Man Cybern Part B,2004,34(1):34-37.
  • 10何飞,黎敏,阳建宏,徐金梧.基于小波相关向量机的产品质量模型[J].北京科技大学学报,2009,31(7):934-938. 被引量:2

二级参考文献10

  • 1姚林,阳建宏,徐金梧,王植.基于偏最小二乘回归模型的带钢热镀锌质量监控方法[J].北京科技大学学报,2007,29(6):627-631. 被引量:13
  • 2Tipping M E. Sparse Bayesian learning and the relevance vector machine. J Math Learn Res, 2001, 3:211.
  • 3Scholkopf B, Alexander J S. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. London: The MIT Press, 2001.
  • 4Vladirnir N V. The Nature of Statistical Learning Theory. New York: Springer, 1995.
  • 5Kropotov D, Ptashko N, Vasiliev O, et al. On kernel selection in relevance vector machines using stability principle//The 18th In- ternational Conference on Pattern Recognition, ( ICPR ' 06 ), 2006.
  • 6Nikolaev N, Tino P. Sequential relevance vector machine learning from time series//Proceedings of International Joint Conference on Neural Networks. Montreal, 2005.
  • 7Gustavo C V, Manel M R, Jose R A, et al. Nonlinear system identification with composite relevance vector machines. 1EEE Signal Process Lett, 2007, 14(4) :279.
  • 8Chen S, Gunn S R, Harris C J. The relevance vector machine technique for channel equalization application. IEEE Trans Neural Networks, 2001, 12(6): 1529.
  • 9Zhang L, Zhou W D, Jiao L C . Wavelet support vector machine. IEEE Trans Syst Man Cybern Part B, 2004, 34(1) : 34.
  • 10丁二锐,曾平,丁阳,王义峰.一种新的回归型约简多分辨率相关向量机[J].控制与决策,2008,23(1):65-69. 被引量:5

共引文献1

同被引文献9

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部