期刊文献+

12Cr13马氏体不锈钢热处理工艺参数的ANN-GA模型 被引量:1

ANN-GA model of 12Cr13 martensitic stainless steel heat treatment technological parameter
下载PDF
导出
摘要 12Cr13马氏体不锈钢淬火和回火工艺参数对其力学性能影响较大,测定其热处理工艺对力学性能的影响周期长且成本高。在神经网络与遗传算法基础上建立12Cr13马氏体不锈钢热处理工艺参数与力学性能的预测模型。模型输入单元为淬火温度、淬火保温时间、冷却方式及回火温度,输出单元为抗拉强度、屈服强度、延伸率及断面收缩率。采用Traincgf算法的神经网络收敛速度快,误差小。隐含层节点单元为6,动量因子为0.6,学习速率为0.2时,网络测试的均方误差值均最小。经过网络测试的抗拉强度、屈服强度、延伸率及断面收缩率的最大相对误差绝对值分别为3.24%,2.48%,9.45%和8.82%。12Cr13马氏体不锈钢的预测模型具有结构简单,拟合精度高的特点。可利用12Cr13马氏体不锈钢热处理工艺参数预测其力学性能,为工艺优化设计提供参考。 The quenching and tempering technological parameters of 12Cr13 martensitic stainless steel have great influence on its mechanical properties, the period is long and cost is high to determine the influence of its heat treatment process on mechanical properties. The predictive model of 12Cr13 martensitic stainless steel heat treatment technological parameter and mechanical properties was established on the basis of artificial neural network(ANN) and genetic algorithm(GA). The model input unit has quenching temperature, holding time, cooling way and tempering temperature, output unit has tensile strength, yield strength, elongation rate and reduction of area. The neural network adopting Traincgf algorithm convergence speed is fast and error is small. When concealed layer node unit is 6, momentum factor is 0.6, learning rate is 0.2, the mean square error value of network measurement is all minimum. The maximum relative error absolute value of tensile strength, yield strength, elongation rate and reduction of area tested with network is 3.24% ,2.48% ,9.45% and 8.82% respectively. The predictive model of 12Cr13 martensitic stainless steel has the characteristic of simple structure and high fitting precision. The mechanical properties of 12Cr13 martensitie stainless steel can be predicted with its heat treatment technological parameters, it supplies references for designing process optimization.
出处 《金属制品》 2013年第3期39-43,共5页 Metal Products
关键词 12Cr13不锈钢 热处理工艺 抗拉强度 延伸率 断面收缩率 人工神经网络 遗传算法 12Cr13 stainless steel heat treatment technological tensile strength elongation rate artificial neural network genetic algorithm
  • 相关文献

参考文献5

  • 1Turnbull A, Nimmo B. Stress corrosion testing of welded super martensitic stainless steels for oil and gas pipelines [ J ]. Corrosion Engineering Science and Technology, 2005, 40(2) : 103 -109.
  • 2Yazdanmehr M, Mousavi Anijdan S H, Bahrami A. Using GA - ANN algorithm to optimize soft magnetic properties of nanocrystalline mechanically alloyed Fe -Si powders [ J ]. Computational Materials Science, 2009, 44 (4) : 1218 - 1221.
  • 3Mousavi Anijdan S H, Madaah-Hosseini H R, Bahrami A. Flow stress optimization for 304 stainless steel under cold and warm compression by artificial neural network and genetic algorithm [ J ]. Materials and Design, 2007,28 (2) : 609 -615.
  • 4闵惜琳,刘国华.人工神经网络结合遗传算法在建模和优化中的应用[J].计算机应用研究,2002,19(1):79-80. 被引量:58
  • 5Mirzadeh H, Najafizadeh A. Correlation between process- ing parameters and strain-induced martensitic transforma- tion in cold worked AISI 301 stainless steel [ J ]. Materials Characterization ,2008, 59 ( 11 ) : 1650 - 1654.

二级参考文献1

共引文献57

同被引文献5

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部