期刊文献+

稀疏正则化方法的超声信号反卷积 被引量:1

Sparse Regularization-Based Ultrasound Signal Deconvolution
下载PDF
导出
摘要 提出了一种在稀疏分解框架下的超声信号反卷积模型,改善了超声成像的质量。该模型包含两个正则项,分别约束信号的光滑性和字典表示的稀疏性,并应用高阶统计量和MA模型估计系统的点扩散函数。模型直接求解很困难,采用分裂Bregman方法交替迭代求解;并对反卷积的信号进行动态滤波、包络检波、二次抽样、动态压缩、灰阶映射等处理,得到超声灰度图像。实验结果表明,该反卷积方法成像比直接成像的分辨率高,图像的对比度得到增强,斑点噪声明显减少。 A ultrasound signal deeonvolution model in the framework of the sparse decomposition is proposed to improve the quality of medical ultrasound images. The smoothness of the signal and the sparsity of the dictionary representation are constrained by using two regularization terms, and the point spread function is estimated by using higher order statistics and MA model. The proposed model is solved by alternatively iterating split Bregman method. The gray scale ultrasound image is acquired by the dynamic filtering, envelope detecting, second sampling, dynamic compressing, and gray scale mapping. Experiments show that the proposed deconvolution method can achieve images with higher resolution, better contrast enhancement, and less speckle noise, compared with direct imaging methods.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2013年第3期475-479,共5页 Journal of University of Electronic Science and Technology of China
基金 国家973项目(2010CB933903) 国家自然科学基金(61271007)
关键词 反卷积 点扩散函数 正则化 稀疏分解 deconvolution point spread function regularization sparse decomposition
  • 相关文献

参考文献16

  • 1WAN Sui-ren, RAJU B I, SRINIVASAN A M. Robust deconvolution of high fi'equeney ultrasound images using higher-order spectral analysis and wavelets[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2003, 50(10): 1286-1295.
  • 2杨克己,方文平,黄一春,乔华伟.一种应用于超声无损检测的广谱反卷积技术[J].浙江大学学报(工学版),2009,43(10):1766-1771. 被引量:3
  • 3FIGUEIREDO M'ARIO A T. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586-597.
  • 4TZIKAS D G, LIKAS A C. Variational bayesian sparse kernel-based blind mage deconvolution with student's-t priors[J]. IEEE Transactions on Image Processing, 2009, 18(4): 753-764.
  • 5NEEDELL D, VERSHYNIN R. Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 310-316.
  • 6ZHANG Xiao-qun, BURGE M. Bregmanized nonlocal regularization for deconvolution and sparse reconstruction [J]. SIAM Journal on Imaging Sciences, 2010, 3(3): 253- 276.
  • 7PALLADINI A, TESTONI N. A reduced complexity estimation algorithm for ultrasound images de-blurring[J]. Computer Methods and Programs in Biomedicine, 2009, 95(2): 4-11.
  • 8DUPE F X, FADILI J M, STARCK J L. A proximal iterationfor deconvolving poisson noisy images using sparse rep-resentations[J]. IEEE Transactions on Image Processing Publication, 2009, 18(2): 310-321.
  • 9KIM J, JANG S. High order statistics based blind deconvolution of bi-level images with unknown intensity values[J]. Optics Express, 2010, 18(12): 12872-12889.
  • 10ELAD M, FIGUEIREDO M T, MA Yi. On the role of sparse and redundant representations in image processing [J]. Proceedings of the IEEE, 2010, 98(6): 972-982.

二级参考文献22

  • 1杨克己.基于神经网络的小波域超声信号消噪技术研究[J].浙江大学学报(工学版),2005,39(6):775-779. 被引量:2
  • 2CHEN C H, SIN S K. On effective spectrum-based ultrasonic deconvolution techniques for hidden flaw characterization [J ]. Acoustical Society of America, 1990, 87(3): 976-987.
  • 3JHANG K, JANG H, PARK B, et al. Wavelet analysis based deconvolution to improve the resolution of scanning acoustic microscope images for the inspection of thin die layer in semiconductor[J]. NDT and E International Volume, 2002, 35(8): 549-557.
  • 4KENNEDY J, EBERHART R. Particle swarm optimization[C]// Proceedings of IEEE International Conference on Neural Networks. Australia: IEEE, 1995.. 1942- 1948.
  • 5ANGRISANI L , DAPONTE P, D'APUZZO M. The detection of echoes from multilayer structures using the wavelet transform [J ]. Instrumentation and Measure- ment, 2000, 49(4): 727-731.
  • 6DONOHO D L. De-Noising by soft-thresholding [J]. IEEE Transactions on Imformation Technology, 1995, 41 (3) :612 - 627.
  • 7TOMAS O, TADEUSZ S. Minimum entropy deconvolution of pulse-echo signals acquired from attenuative layered media[J]. Acoustical Society of America, 2001, 109(6) : 2831 - 2839.
  • 8F J Anscombe. The transformation of Poisson, binomial and negative-binomial data[ J ]. Biomelrika, 1948, 35 ( 3 ) : 246 - 254.
  • 9B Zhang,M Fadili,J-L Starck. Wavelets,ridgelets and curvelets for poisson noise removal [ J ]. IEEE Trans Image Process, 2008,17(7) : 1093 - 1108.
  • 10E D. Kolaczyk. Nonparametxic estimation of intensity maps us ing Haar wavelets and Poisson noise characteristics[ J]. The As trophysical Journal, 2000,534( 1 ) :490- 505.

共引文献21

同被引文献35

  • 1Abeyratne UR, Petropulu AP, Reid JM. Higher order spectra based deconvolution of ultrasound images[J]. IEEE Trans Ultrason Ferroelectrics Freq Contr, 1995,42(6): 1064-1075.
  • 2Shin HC, Prager R, Ng J, et al. Sensitivity to point-spread function parameters in medical ultrasound image deconvolution[J]. Ultrasonics, 2009, 49(3): 344-357.
  • 3Morin R, Bidon S, Basarab A, et al. Semi-blind deconvolution for resolution enhancement in ultrasound imaging[J]. ICIP, 2013, 1413- 1417.
  • 4Wan S, Raju BI, Srinivasan MA. Robust deconvolution of highfrequency ultrasound images using higher-order spectral analysis and wavelets[J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2003, 50(10): 1286-1295.
  • 5Taxt T, Frolova GV. Noise robust one-dimensional blind deconvolution of medical ultrasound images[J]. IEEE Trans Ultrason Ferroelectr Freq Control, 1999,46(2): 291-299.
  • 6Michailovich 0, Adam D. Robust estimation of ultrasound pulses using outlier-resistant de-noising[J]. IEEE Trans Med Imaging, 2003, 22(3): 368-381.
  • 7Taxt T. Restoration of medical ultrasound images using twodimensional homomorphic deconvolution[J]. IEEE Trans Ultrason Ferroelectr Freq Control, 1995,42(4): 543-554.
  • 8Taxt T, Strand J. Two-dimensional noise-robust blind deconvolution of ultrasound images[J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2001, 48(4): 861-866.
  • 9Jirik R, Taxt T. High - resolution ultrasonic imaging using two - dimensional homomorphic filtering[J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2006, 53(8): 1440-1448.
  • 10Michailovich OV, Adam D. A novel approach to the 2-D blind deconvolution problem in medical ultrasound[J]. IEEE Trans Med Imaging, 2005, 24(1): 86-104.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部