期刊文献+

局部凸空间中的集合极小元的刻画

Efficient Solution of Set Describe in Local Convex Space
下载PDF
导出
摘要 在局部凸空间下,将一般对偶锥推广,引入了扩展对偶锥,用其中的元素定义了一类单调增的次线性函数.给出了扩展对偶锥的一些性质,利用对非凸向量优化问题的简单有效的纯量技巧,证明集合的有效点解可以通过计算某个次线性泛函的最小点得到. In this paper, in local convex spaces by extending a usual definition of dual cones , an augmented dual of a cone is introduced. A special class of monotonically increasing sub - linear function are defined by using the elements of the augmented dual cone . As an application, a simple and efficient scalafization technique is shown that any properly minimal point of a set in local convex space can be calculated by miniminizing a certain sublinear functional.
出处 《哈尔滨师范大学自然科学学报》 CAS 2012年第6期4-6,9,共4页 Natural Science Journal of Harbin Normal University
基金 黑龙江省教育厅项目资助(12521147 11553067)
关键词 扩展对偶锥 纯量化 局部凸空间 Augmented dual cones Scalariza Local convex space
  • 相关文献

参考文献6

  • 1Phelps R R. Support cones in Banach space and their applica-tions. Advances in Math,1974,13:1 -19 .
  • 2Jahn J. A generalization of a theorem of Arrow,Barankin,and Blackwell,SiamI J . Control Optim, 1998 ,26 : 999 -1005.
  • 3Gasimov R N. Characterization of the Benson proper efficiencyand scalarization in non - convex vector optimization ’ in Mul-tiple Criteria Decision Making in the New Millennium (Anka-ra,2000). Lecture ,2006 :521 -540.
  • 4Refail Kasirabeyli . A nonlinear cone separation theorem andscalarization in non - convex vector optimization. Siam J Op-tim,2010,20(3 ) :1591 -1619.
  • 5Song W, Sach P H. Set - valued Vector Optimization.
  • 6Jahn J. Vector optimization. Springer - Verlin, Berlin, Hei-delberg ,2004.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部