期刊文献+

保序部分单变换半群的自同态 被引量:1

Endomorphism of the Order-preserving Partial Singular Transformation Semigroups
下载PDF
导出
摘要 设n为正整数,令IOn表示Xn={1,2,…,n}上所有保序部分单变换在复合运算下而成的半群,刻画了IOn上的所有自同态. Abstract: Let n be a positive integer. Let I0. denote the semigroup generated by the compound operation of order- preserving partial injective transformation on X. = { 1,2,……n}. This paper described all endomorphisms on IOn.
出处 《杭州师范大学学报(自然科学版)》 CAS 2013年第3期220-222,239,共4页 Journal of Hangzhou Normal University(Natural Science Edition)
关键词 保序部分单变换 自同态 同余 order-preserving partial injective transformation endomorphism congruence
  • 相关文献

参考文献4

  • 1Cowan D F, Reilly N R. Partial cross-sections of symmetric inverse semigroups[J]. Int J Algebra Comput, 1995,5(3) :259-287.
  • 2Fernandes V H. The monoid of all injective order preserving partial transformations on a finite chain[J]. Semigroup Forum, 2001,62 (2): 178-204.
  • 3Garba G U. Nilpotents in semigroups of partial one-to-one order-preserving mappings[J]. Semigroup Forum, 1994,48(1) :37-49.
  • 4Ganyushkin O, Mazorehuk V. On the structure of IOm [J]. Semigroup Forum, 2003,66 (3) : 455-483.

同被引文献7

  • 1Fernandes V H, Jesus M M, Malteev V, et al. Endomorphisms of semigroups of order-preserving mappings[J]. Semigroup Forum, 2010,81 : 277-285.
  • 2Ganvushkin O, Mazorchuk V. Introduction to classical finite transformation semiroup[M]. London: Spriner Verlag,2009.
  • 3Ganyushkin O, Mazorchuk V. On the structure of IO,[J]. Semigroup Forum, 2003, 66: 455-483.
  • 4Fernandes V H. The monoid of all injective order preserving partial transformations on a finite ehain[J]. Semigroup Forum, 2001, 62: 178-204.
  • 5Aizenstat A J. Homomorphisms of semigroups of endomorphisms of ordered sets[J]. Uch Zap Leningr Gos Pedagog Inst, 1962 : 238,38- 48.
  • 6Howie J M. Fundamentals of semigroup theory[M]. New York: Oxford University Press, 1995.
  • 7Timothy L, Andrew S. The endomorphisms of a finite chain form a Rees congruence semigroup[J] Semigroup Forum, 1999,59: 167- 170.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部