摘要
通过引入一个新的变换 ,将变系数组合KdV_Burgers方程约化为非线性常微分方程 .其中包含Jacobi椭圆方程和Painlev啨Ⅱ型方程 ,推得变系数组合KdV_Burgers方程的若干精确孤子解 .
WT5BZ]In this paper, by use of a new transformation, the variable coefficient combined KdV_Burgers equation reduces to nonlinear ordinary differential equation (NODE), which contains Jacobi elliptic equation and PainlevéⅡ type equation. And then based on this NODE obtained, several exact solitons_like solutions are given for the variable coefficient KdV_Burgers equation.
出处
《烟台大学学报(自然科学与工程版)》
CAS
2000年第4期239-244,共6页
Journal of Yantai University(Natural Science and Engineering Edition)
基金
高校博士点基金!资助项目 (980 14119)
关键词
对称约化
孤子解
KDV-B方程
变系数组合
the variable coefficient combined KdV_Burgers equation
symmetry reduction
soliton solution