期刊文献+

不确定属性图的子图同构及其判定算法

Uncertain Attribute Graph Sub-graph Isomorphism and its Determination Algorithm
下载PDF
导出
摘要 在分析了复杂网络(社会网络)结构的基础上,针对不确定属性图的特征,首先定义了不确定属性图的期望子图同构;由于其只用一个阈值作为限制条件,虽然方法简单,但计算量大,故接着给出了不确定属性图的α-β子图同构的定义,并对其语义进行了解释说明;第三,设计并实现了子图同构算法;最后,通过实验证明α-β子图同构优于期望子图同构,同时分析了不同阈值情况下α-β子图同构的变化规律。α-β子图同构算法的研究为不确定属性图的子图查询和社区挖掘工作奠定了基础。 The uncertain attribute graph expectative sub-graph isomorphism is based on the analysis of complex net- work structure and the characteristic of uncertain attribute graph. The uncertain attribute graph expectative sub-graph isomorphism is only one threshold value as constraint conditions. The method is simple,hut the computation is large α-βmount. Therefore, it brought in the definition ofα-β sub-graph isomorphic of uncertain attribute graph, explained the se- mantic,and designed and implemented the algorithm of α-β sub-graph isomorphism. Through the experiments was proved that α-β sub-graph isomorphic is better than expectative sub-graph,and it arialyzed the variation in the different threshold cases. The research of α-β sub-graph isomorphism algorithm lays the foundation for uncertain attribute graph sub-graph query and community mining.
作者 张春英 张雪
出处 《计算机科学》 CSCD 北大核心 2013年第6期242-246,共5页 Computer Science
基金 河北省自然科学基金(F2012209019)资助
关键词 不确定属性图 期望子图同构 α-β子图同构 Uncertain attribute graph, Expectative sub-graph isomorphism,α-β sub-graph isomorphism
  • 相关文献

参考文献10

二级参考文献137

  • 1金澈清,钱卫宁,周傲英.流数据分析与管理综述[J].软件学报,2004,15(8):1172-1181. 被引量:161
  • 2谷峪,于戈,张天成.RFID复杂事件处理技术[J].计算机科学与探索,2007,1(3):255-267. 被引量:54
  • 3李锋,陆韬.任意图同构判定及其应用[J].复旦学报(自然科学版),2006,45(4):480-484. 被引量:12
  • 4Deshpande A, Guestrin C, Madden S, Hellerstein J M, Hong W. Model-driven data acquisition in sensor networks// Proceedings of the 30th International Conference on Very Large Data Bases. Toronto, 2004:588-599
  • 5Madhavan J, Cohen S, Xin D, Halevy A, Jeffery S, Ko D, Yu C. Web-scale data integration: You can afford to pay as you go//Proceedings of the 33rd Biennial Conference on Innovative Data Systems Research. Asilomar, 2007:342-350
  • 6Liu Ling. From data privacy to location privacy: Models and algorithms (tutorial)//Proceedings of the 33rd International Conference on Very Large Data bases. Vienna, 2007: 1429- 1430
  • 7Samarati P, Sweeney L. Generalizing data to provide anonymity when disclosing information (abstract)//Proeeedings of the 17th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. Seattle, 1998:188
  • 8Cavallo R, Pittarelli M. The theory of probabilistic databases//Proceedings of the 13th International Conference on Very Large Data Bases. Brighton, 1987:71-81
  • 9Barbara D, Garcia-Molina H, Porter D. The management of probabilistic data. IEEE Transactions on Knowledge and Data Engineering, 1992, 4(5): 487-502
  • 10Fuhr N, Rolleke T. A probabilistic relational algebra for the integration of information retrieval and database systems. ACM Transactions on Information Systems, 1997, 15(1): 32-66

共引文献208

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部