期刊文献+

基于聚类分析和旋转的改进的SAR图像PPB去斑 被引量:1

Improved Probabilistic Patch-based SAR Image Despeckling Based on Cluster Analysis and Rotation
下载PDF
导出
摘要 PPB滤波器不能在滤波过程中对参与滤波的像素块进行有效的选择并具有不适宜的权重计算方式,从而导致滤波后的图像抑制了原图中尺寸较小的图像细节。针对以上问题,首先引入簇树这一数据结构,选取与PPB滤波器相同的距离准则构建簇树,以实现对图像块的快速、精确的筛选。然后通过旋转像素块重新定义两个像素块之间的权重,解决原始的PPB滤波器对图像中旋转的或镜像的重复区域不能很好利用的问题。最后采用PPB滤波器的非迭代滤波方式进行滤波。实验证明,改进的滤波器在纹理和细节保持方面较原滤波器有显著的提高,特别是在尺寸较小的图像细节特征保持方面。 Thin details in the filtered images are suppressed by the probabilistic patch-based (PPB) filter, which is at- tributed to the absence of effective selection of pixel patches and the unsuitable method of weight computing. For these problems, the data structure of cluster tree was introduced firstly. The same distance measure as applied in the PPB fil- ter was chosen to build the cluster tree, which allows for efficient and precise selection of similar patche~ Since the origi- nal PPB filter could not handle rotated or mirrored repetitive regions properly, the weight between two patches was re- defined after the rotation of the patches. Finally, the PPB (non-it) filter was used for the denoising. Experimental results show that the improved filter has better performance in texture and details preservation than the original PPB (non-it) filter, especially in retaining thin details.
出处 《计算机科学》 CSCD 北大核心 2013年第6期272-275,282,共5页 Computer Science
关键词 SAR图像 去斑 聚类 PPB滤波器 簇树 SAR image, Despeekling, Clustering, PPB ( probabilistic patch-based) filter, Cluster tree
  • 相关文献

参考文献10

  • 1Lee J S,Wen J H,Ainsworth T L,et al.Improved sigma filter for speckle filtering of SAR imagery[J].IEEE Transactions on Geoscience and Remote Sensing,2009,47 (1):202-213.
  • 2Efros A A,Leung T K.Texture synthesis by non-parametric sampling[C]//Proceedings of the International Conference on Computer Vision.1999,2.:1033-1038.
  • 3Buades A,Coll B,Morel J.A review of image denoising algorithms,with a new one[J].Multiscale Modeling and Simulation,2005,4 (2):490-530.
  • 4Zhong H,Li Y W,Jiao L C.Bayesian nonlocal means filter for SAR image despeckling[C]//Proc.Asia-Pacific Conf.Synthetic Aperture Radar.Xian,China,2009:1096-1099.
  • 5Kervrann C,Boulanger J,Coupe P.Bayesian non-local means filter,image redundancy and adaptive dictionaries for noise removal[C]// Proc.Int.Conf.Scale Space Me-thods Variational Methods Comput.Vis.2007:520-532.
  • 6Deledalle C,Denis L,Tupin F.Iterative weighted maximum like-lihood denoising with probabilistic patch-based weights[J].IEEE Trans.Image Process.,2009,18(12):2661-2672.
  • 7Gilboa G,Osher S.Non-local linear image regularization and supervised segmentation[R].Los Angeles:Dept.Math.Univ.California,2006:06-47.
  • 8Liu T,Moore A,Gray A,et al.An investigation of practical approximate nearest neighbor algorithms[C]//Proc.Neural Information Processing Systems.2005:825-832.
  • 9Sven G,Sebastian Z,Joachim W.Rotationally invariant similarity measures for nonlocal image denoising[J].Visual Comm.And Image Represent,2011,22:117-130.
  • 10Oliver C,Quegan S.Understanding Synthetic Aperture Radar Images[M].NC:SciTech,2004.

同被引文献6

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部